IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i12p2154-2167.html
   My bibliography  Save this article

A Decision Support Tool to Compare Waterborne and Foodborne Infection and/or Illness Risks Associated with Climate Change

Author

Listed:
  • Jack Schijven
  • Martijn Bouwknegt
  • Ana Maria de Roda Husman
  • Saskia Rutjes
  • Bertrand Sudre
  • Jonathan E. Suk
  • Jan C. Semenza

Abstract

Climate change may impact waterborne and foodborne infectious disease, but to what extent is uncertain. Estimating climate‐change‐associated relative infection risks from exposure to viruses, bacteria, or parasites in water or food is critical for guiding adaptation measures. We present a computational tool for strategic decision making that describes the behavior of pathogens using location‐specific input data under current and projected climate conditions. Pathogen‐pathway combinations are available for exposure to norovirus, Campylobacter, Cryptosporidium, and noncholera Vibrio species via drinking water, bathing water, oysters, or chicken fillets. Infection risk outcomes generated by the tool under current climate conditions correspond with those published in the literature. The tool demonstrates that increasing temperatures lead to increasing risks for infection with Campylobacter from consuming raw/undercooked chicken fillet and for Vibrio from water exposure. Increasing frequencies of drought generally lead to an elevated infection risk of exposure to persistent pathogens such as norovirus and Cryptosporidium, but decreasing risk of exposure to rapidly inactivating pathogens, like Campylobacter. The opposite is the case with increasing annual precipitation; an upsurge of heavy rainfall events leads to more peaks in infection risks in all cases. The interdisciplinary tool presented here can be used to guide climate change adaptation strategies focused on infectious diseases.

Suggested Citation

  • Jack Schijven & Martijn Bouwknegt & Ana Maria de Roda Husman & Saskia Rutjes & Bertrand Sudre & Jonathan E. Suk & Jan C. Semenza, 2013. "A Decision Support Tool to Compare Waterborne and Foodborne Infection and/or Illness Risks Associated with Climate Change," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2154-2167, December.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:12:p:2154-2167
    DOI: 10.1111/risa.12077
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12077
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan C. Semenza & Dragoslav Domanović, 2013. "Blood supply under threat," Nature Climate Change, Nature, vol. 3(5), pages 432-435, May.
    2. P. F. M. Teunis & A. H. Havelaar, 2000. "The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirna Panic & James D. Ford, 2013. "A Review of National-Level Adaptation Planning with Regards to the Risks Posed by Climate Change on Infectious Diseases in 14 OECD Nations," IJERPH, MDPI, vol. 10(12), pages 1-27, December.
    2. Myoung Su Park & Ki Hwan Park & Gyung Jin Bahk, 2018. "Interrelationships between Multiple Climatic Factors and Incidence of Foodborne Diseases," IJERPH, MDPI, vol. 15(11), pages 1-12, November.
    3. Simin Mehdipour & Nouzar Nakhaee & Farzaneh Zolala & Maryam Okhovati & Afsar Foroud & Ali Akbar Haghdoost, 2022. "A systematized review exploring the map of publications on the health impacts of drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 35-62, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
    2. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    3. Diana Erazo & Luke Grant & Guillaume Ghisbain & Giovanni Marini & Felipe J. Colón-González & William Wint & Annapaola Rizzoli & Wim Van Bortel & Chantal B. F. Vogels & Nathan D. Grubaugh & Matthias Me, 2024. "Contribution of climate change to the spatial expansion of West Nile virus in Europe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    5. Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.
    6. Amie Adkin & Neil Donaldson & Louise Kelly, 2013. "A Quantitative Assessment of the Prion Risk Associated with Wastewater from Carcass‐Handling Facilities," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1212-1227, July.
    7. Gordon L. Nichols & Yvonne Andersson & Elisabet Lindgren & Isabelle Devaux & Jan C. Semenza, 2014. "European Monitoring Systems and Data for Assessing Environmental and Climate Impacts on Human Infectious Diseases," IJERPH, MDPI, vol. 11(4), pages 1-43, April.
    8. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Peter F. M. Teunis & Cynthia L. Chappell & Pablo C. Okhuysen, 2002. "Cryptosporidium Dose Response Studies: Variation Between Isolates," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 175-185, February.
    10. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà , Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    11. Arnout R. H. Fischer & Aarieke E. I. De Jong & Esther D. Van Asselt & Rob De Jonge & Lynn J. Frewer & Maarten J. Nauta, 2007. "Food Safety in the Domestic Environment: An Interdisciplinary Investigation of Microbial Hazards During Food Preparation," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1065-1082, August.
    12. Mary J. Bartholomew & David J. Vose & Linda R. Tollefson & Curtis C. Travis, 2005. "A Linear Model for Managing the Risk of Antimicrobial Resistance Originating in Food Animals," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 99-108, February.
    13. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    14. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    15. Jan C. Semenza, 2015. "Prototype Early Warning Systems for Vector-Borne Diseases in Europe," IJERPH, MDPI, vol. 12(6), pages 1-19, June.
    16. Sushil B. Tamrakar & Charles N. Haas, 2011. "Dose‐Response Model of Rocky Mountain Spotted Fever (RMSF) for Human," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1610-1621, October.
    17. Jack Schijven & Gerard B. J. Rijs & Ana Maria De Roda Husman, 2005. "Quantitative Risk Assessment of FMD Virus Transmission via Water," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 13-21, February.
    18. Lailai Chen & Helena Geys & Shaun Cawthraw & Arie Havelaar & Peter Teunis, 2006. "Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1613-1621, December.
    19. Delphine Pessoa & Caetano Souto-Maior & Erida Gjini & Joao S Lopes & Bruno Ceña & Cláudia T Codeço & M Gabriela M Gomes, 2014. "Unveiling Time in Dose-Response Models to Infer Host Susceptibility to Pathogens," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-9, August.
    20. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:12:p:2154-2167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.