IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v63y2016i2p138-171.html
   My bibliography  Save this article

Branch‐and‐price‐and‐cut for the manpower routing problem with synchronization constraints

Author

Listed:
  • Zhixing Luo
  • Hu Qin
  • Wenbin Zhu
  • Andrew Lim

Abstract

In this article, we propose a branch‐and‐price‐and‐cut (BPC) algorithm to exactly solve the manpower routing problem with synchronization constraints (MRPSC). Compared with the classical vehicle routing problems (VRPs), the defining characteristic of the MRPSC is that multiple workers are required to work together and start at the same time to carry out a job, that is, the routes of the scheduling subjects are dependent. The incorporation of the synchronization constraints increases the difficulty of the MRPSC significantly and makes the existing VRP exact algorithm inapplicable. Although there are many types of valid inequalities for the VRP or its variants, so far we can only adapt the infeasible path elimination inequality and the weak clique inequality to handle the synchronization constraints in our BPC algorithm. The experimental results at the root node of the branch‐and‐bound tree show that the employed inequalities can effectively improve the lower bound of the problem. Compared with ILOG CPLEX, our BPC algorithm managed to find optimal solutions for more test instances within 1 hour. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 138–171, 2016

Suggested Citation

  • Zhixing Luo & Hu Qin & Wenbin Zhu & Andrew Lim, 2016. "Branch‐and‐price‐and‐cut for the manpower routing problem with synchronization constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 138-171, March.
  • Handle: RePEc:wly:navres:v:63:y:2016:i:2:p:138-171
    DOI: 10.1002/nav.21683
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21683
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luo, Zhixing & Qin, Hu & Lim, Andrew, 2014. "Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints," European Journal of Operational Research, Elsevier, vol. 234(1), pages 49-60.
    2. Anuj Mehrotra & Kenneth E. Murphy & Michael A. Trick, 2000. "Optimal shift scheduling: A branch‐and‐price approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 185-200, April.
    3. Frank Hennig & Bjørn Nygreen & Marco E. Lübbecke, 2012. "Nested column generation applied to the crude oil tanker routing and scheduling problem with split pickup and split delivery," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 298-310, April.
    4. Ahmed Hadjar & Odile Marcotte & François Soumis, 2006. "A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 54(1), pages 130-149, February.
    5. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    6. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    7. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    8. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    9. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    10. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    11. Yanzhi Li & Andrew Lim & Brian Rodrigues, 2005. "Manpower allocation with time windows and job‐teaming constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 302-311, June.
    12. Moshe Dror & Pierre Trudeau, 1990. "Split delivery routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 383-402, June.
    13. Luigi Moccia & Jean‐François Cordeau & Manlio Gaudioso & Gilbert Laporte, 2006. "A branch‐and‐cut algorithm for the quay crane scheduling problem in a container terminal," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 45-59, February.
    14. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    2. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    3. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    4. Kevin Dalmeijer & Guy Desaulniers, 2021. "Addressing Orientation Symmetry in the Time Window Assignment Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 495-510, May.
    5. Stefan Irnich & Guy Desaulniers & Jacques Desrosiers & Ahmed Hadjar, 2010. "Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 297-313, May.
    6. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    7. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    8. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    9. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Tilk, Christian & Drexl, Michael & Irnich, Stefan, 2019. "Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 549-565.
    11. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    12. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    13. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    14. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    15. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    16. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    17. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    18. Nicola Bianchessi & Michael Drexl & Stefan Irnich, 2019. "The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints," Transportation Science, INFORMS, vol. 53(4), pages 1067-1084, March.
    19. Said Dabia & David Lai & Daniele Vigo, 2019. "An Exact Algorithm for a Rich Vehicle Routing Problem with Private Fleet and Common Carrier," Transportation Science, INFORMS, vol. 53(4), pages 986-1000, July.
    20. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:63:y:2016:i:2:p:138-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.