IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v57y2010i6p519-539.html
   My bibliography  Save this article

A nested benders decomposition approach for telecommunication network planning

Author

Listed:
  • Joe Naoum‐Sawaya
  • Samir Elhedhli

Abstract

Despite its ability to result in more effective network plans, the telecommunication network planning problem with signal‐to‐interference ratio constraints gained less attention than the power‐based one because of its complexity. In this article, we provide an exact solution method for this class of problems that combines combinatorial Benders decomposition, classical Benders decomposition, and valid cuts in a nested way. Combinatorial Benders decomposition is first applied, leading to a binary master problem and a mixed integer subproblem. The subproblem is then decomposed using classical Benders decomposition. The algorithm is enhanced using valid cuts that are generated at the classical Benders subproblem and are added to the combinatorial Benders master problem. The valid cuts proved efficient in reducing the number of times the combinatorial Benders master problem is solved and in reducing the overall computational time. More than 120 instances of the W‐CDMA network planning problem ranging from 20 demand points and 10 base stations to 140 demand points and 30 base stations are solved to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010

Suggested Citation

  • Joe Naoum‐Sawaya & Samir Elhedhli, 2010. "A nested benders decomposition approach for telecommunication network planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 519-539, September.
  • Handle: RePEc:wly:navres:v:57:y:2010:i:6:p:519-539
    DOI: 10.1002/nav.20419
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20419
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Heikkinen & A. Prékopa, 2005. "Optimal power control in a wireless network using a model with stochastic link coefficients," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(2), pages 178-192, March.
    2. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    3. Olinick, Eli V. & Rosenberger, Jay M., 2008. "Optimizing revenue in CDMA networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 186(2), pages 812-825, April.
    4. Joakim Kalvenes & Jeffery Kennington & Eli Olinick, 2006. "Base Station Location and Service Assignments in W--CDMA Networks," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 366-376, August.
    5. Jay M. Rosenberger & Eli V. Olinick, 2007. "Robust tower location for code division multiple access networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 151-161, March.
    6. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    7. Edoardo Amaldi & Pietro Belotti & Antonio Capone & Federico Malucelli, 2006. "Optimizing base station location and configuration in UMTS networks," Annals of Operations Research, Springer, vol. 146(1), pages 135-151, September.
    8. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mubarak, Mamdouh & Üster, Halit & Abdelghany, Khaled & Khodayar, Mohammad, 2021. "Strategic network design and analysis for in-motion wireless charging of electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. Sushil Poudel & Mohammad Marufuzzaman & Md Abdul Quddus & Sudipta Chowdhury & Linkan Bian & Brian Smith, 2018. "Designing a Reliable and Congested Multi-Modal Facility Location Problem for Biofuel Supply Chain Network," Energies, MDPI, vol. 11(7), pages 1-24, June.
    3. Andrzej Karbowski, 2021. "Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions," Energies, MDPI, vol. 14(20), pages 1-18, October.
    4. Jonas Christoffer Villumsen & Joe Naoum‐Sawaya, 2016. "Column generation for stochastic green telecommunication network planning with switchable base stations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 351-366, August.
    5. N. Beheshti Asl & S. A. MirHassani, 2019. "Accelerating benders decomposition: multiple cuts via multiple solutions," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 806-826, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Christoffer Villumsen & Joe Naoum‐Sawaya, 2016. "Column generation for stochastic green telecommunication network planning with switchable base stations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 351-366, August.
    2. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    3. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    4. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    5. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    6. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    7. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    8. Chen, Lei & Yuan, Di, 2010. "Solving a minimum-power covering problem with overlap constraint for cellular network design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 714-723, June.
    9. Fausto Errico & Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato, 2017. "A Benders Decomposition Approach for the Symmetric TSP with Generalized Latency Arising in the Design of Semiflexible Transit Systems," Transportation Science, INFORMS, vol. 51(2), pages 706-722, May.
    10. Qipeng Zheng & Jianhui Wang & Panos Pardalos & Yongpei Guan, 2013. "A decomposition approach to the two-stage stochastic unit commitment problem," Annals of Operations Research, Springer, vol. 210(1), pages 387-410, November.
    11. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    12. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    13. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    14. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    15. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    16. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
    17. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    18. Chao Li & Muhong Zhang & Kory Hedman, 2021. "Extreme Ray Feasibility Cuts for Unit Commitment with Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1037-1055, July.
    19. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    20. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:57:y:2010:i:6:p:519-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.