IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v54y2007i6p645-655.html
   My bibliography  Save this article

Structured maintenance policies on interior sample paths

Author

Listed:
  • Lisa M. Maillart
  • Ludmila Zheltova

Abstract

We examine the problem of adaptively scheduling perfect observations and preventive replacements for a multi‐state, Markovian deterioration system with silent failures such that total expected discounted cost is minimized. We model this problem as a partially observed Markov decision process and show that the structural properties of the optimal policy hold for certain non‐extreme sample paths. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007

Suggested Citation

  • Lisa M. Maillart & Ludmila Zheltova, 2007. "Structured maintenance policies on interior sample paths," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 645-655, September.
  • Handle: RePEc:wly:navres:v:54:y:2007:i:6:p:645-655
    DOI: 10.1002/nav.20236
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20236
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald Rosenfield, 1976. "Markovian Deterioration with Uncertain Information," Operations Research, INFORMS, vol. 24(1), pages 141-155, February.
    2. Sheldon M. Ross, 1971. "Quality Control under Markovian Deterioration," Management Science, INFORMS, vol. 17(9), pages 587-596, May.
    3. Donald Rosenfield, 1976. "Markovian Deterioration With Uncertain Information — A More General Model," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 389-405, September.
    4. Ohnishi, Masamitsu & Kawai, Hajime & Mine, Hisashi, 1986. "An optimal inspection and replacement policy under incomplete state information," European Journal of Operational Research, Elsevier, vol. 27(1), pages 117-128, October.
    5. William S. Lovejoy, 1987. "Some Monotonicity Results for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 35(5), pages 736-743, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    2. John A. Flory & Jeffrey P. Kharoufeh & David T. Abdul‐Malak, 2015. "Optimal replacement of continuously degrading systems in partially observed environments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(5), pages 395-415, August.
    3. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    4. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    5. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    2. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    3. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    4. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    5. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    6. Miehling, Erik & Teneketzis, Demosthenis, 2020. "Monotonicity properties for two-action partially observable Markov decision processes on partially ordered spaces," European Journal of Operational Research, Elsevier, vol. 282(3), pages 936-944.
    7. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    8. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    9. Stephen M. Gilbert & Hena M Bar, 1999. "The value of observing the condition of a deteriorating machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 790-808, October.
    10. van Staden, Heletjé E. & Boute, Robert N., 2021. "The effect of multi-sensor data on condition-based maintenance policies," European Journal of Operational Research, Elsevier, vol. 290(2), pages 585-600.
    11. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    12. Wallace J. Hopp & Sung‐Chi Wu, 1988. "Multiaction maintenance under markovian deterioration and incomplete state information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 447-462, October.
    13. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    14. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    15. A. Gürhan Kök & Kevin H. Shang, 2007. "Inspection and Replenishment Policies for Systems with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 185-205, February.
    16. M. S. Krishnan & Tridas Mukhopadhyay & Charles H. Kriebel, 2004. "A Decision Model for Software Maintenance," Information Systems Research, INFORMS, vol. 15(4), pages 396-412, December.
    17. Ramin Moghaddass & Şeyda Ertekin, 2018. "Joint optimization of ordering and maintenance with condition monitoring data," Annals of Operations Research, Springer, vol. 263(1), pages 271-310, April.
    18. Lu Jin & Undarmaa Bayarsaikhan & Kazuyuki Suzuki, 2016. "Optimal control limit policy for age-dependent deteriorating systems under incomplete observations," Journal of Risk and Reliability, , vol. 230(1), pages 34-43, February.
    19. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    20. Sarang Deo & Seyed Iravani & Tingting Jiang & Karen Smilowitz & Stephen Samuelson, 2013. "Improving Health Outcomes Through Better Capacity Allocation in a Community-Based Chronic Care Model," Operations Research, INFORMS, vol. 61(6), pages 1277-1294, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:54:y:2007:i:6:p:645-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.