IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v35y1988i5p447-462.html
   My bibliography  Save this article

Multiaction maintenance under markovian deterioration and incomplete state information

Author

Listed:
  • Wallace J. Hopp
  • Sung‐Chi Wu

Abstract

Much research been devoted to modeling the replacement problem under incomplete state information. Almost no work has been done on the maintenance problem under incomplete information with multiple maintenance actions that may not return the system to as good as new. We model this problem and derive structural results concerning the optimal maintenance policy. For the case where the effect of maintenance actions is state dependent, we give conditions under which the optimal policy is finitely computable. Where maintenance is state independent we show a specific structure, consisting of monotonic waiting times and constant maintenance actions, to be optimal.

Suggested Citation

  • Wallace J. Hopp & Sung‐Chi Wu, 1988. "Multiaction maintenance under markovian deterioration and incomplete state information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 447-462, October.
  • Handle: RePEc:wly:navres:v:35:y:1988:i:5:p:447-462
    DOI: 10.1002/1520-6750(198810)35:53.0.CO;2-I
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198810)35:53.0.CO;2-I
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198810)35:53.0.CO;2-I?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald Rosenfield, 1976. "Markovian Deterioration with Uncertain Information," Operations Research, INFORMS, vol. 24(1), pages 141-155, February.
    2. C. Derman & G. J. Lieberman & S. M. Ross, 1984. "On the Use of Replacements to Extend System Life," Operations Research, INFORMS, vol. 32(3), pages 616-627, June.
    3. Gerald L. Thompson, 1968. "Optimal Maintenance Policy and Sale Date of a Machine," Management Science, INFORMS, vol. 14(9), pages 543-550, May.
    4. Morton Klein, 1962. "Inspection--Maintenance--Replacement Schedules Under Markovian Deterioration," Management Science, INFORMS, vol. 9(1), pages 25-32, October.
    5. Z. Kander & A. Raviv, 1974. "Maintenance policies when failure distribution of equipment is only partially known," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(3), pages 419-429, September.
    6. James E. Eckles, 1968. "Optimum Maintenance with Incomplete Information," Operations Research, INFORMS, vol. 16(5), pages 1058-1067, October.
    7. Donald Rosenfield, 1976. "Markovian Deterioration With Uncertain Information — A More General Model," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 389-405, September.
    8. Chelsea C. White, 1977. "A Markov Quality Control Process Subject to Partial Observation," Management Science, INFORMS, vol. 23(8), pages 843-852, April.
    9. Michael Q. Anderson, 1981. "Monotone optimal preventive maintenance policies for stochastically failing equipment," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(3), pages 347-358, September.
    10. Hanan Luss, 1983. "An Inspection Policy Model for Production Facilities," Management Science, INFORMS, vol. 29(9), pages 1102-1109, September.
    11. William P. Pierskalla & John A. Voelker, 1976. "A survey of maintenance models: The control and surveillance of deteriorating systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 353-388, September.
    12. Morton I. Kamien & Nancy L. Schwartz, 1971. "Optimal Maintenance and Sale Age for a Machine Subject to Failure," Management Science, INFORMS, vol. 17(8), pages 495-504, April.
    13. Y. S. Sherif & M. L. Smith, 1981. "Optimal maintenance models for systems subject to failure–A Review," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(1), pages 47-74, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meller, Russell D. & Kim, David S., 1996. "The impact of preventive maintenance on system cost and buffer size," European Journal of Operational Research, Elsevier, vol. 95(3), pages 577-591, December.
    2. Wallace J. Hopp & Yar‐Lin Kuo, 1998. "An optimal structured policy for maintenance of partially observable aircraft engine components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(4), pages 335-352, June.
    3. T Sloan, 2010. "First, do no harm? A framework for evaluating new versus reprocessed medical devices," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 191-201, February.
    4. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    5. Su, Chao-Ton & Wu, Sung-Chi & Chang, Cheng-Chang, 2000. "Multiaction maintenance subject to action-dependent risk and stochastic failure," European Journal of Operational Research, Elsevier, vol. 125(1), pages 133-148, August.
    6. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    7. Kazaz, Burak & Sloan, Thomas W., 2013. "The impact of process deterioration on production and maintenance policies," European Journal of Operational Research, Elsevier, vol. 227(1), pages 88-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Weihua Zhang, 2023. "Analytical Solution to a Partially Observable Machine Maintenance Problem with Obvious Failures," Management Science, INFORMS, vol. 69(7), pages 3993-4015, July.
    2. Armando Z. Milioni & Stanley R. Pliska, 1988. "Optimal inspection under semi‐markovian deterioration: Basic results," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 373-392, October.
    3. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    4. Mark G. Tang, 1993. "A stochastic machine maintenance and sale problem: Results with different production functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 677-696, August.
    5. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    6. Yeek-Hyun Kim & Lyn Thomas, 2013. "Training and repair policies for stand-by systems," Annals of Operations Research, Springer, vol. 208(1), pages 469-487, September.
    7. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer, 2008. "Replacing nonidentical vital components to extend system life," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 700-703, October.
    8. Stephen M. Gilbert & Hena M Bar, 1999. "The value of observing the condition of a deteriorating machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 790-808, October.
    9. Ali Dogramaci & Nelson M. Fraiman, 2004. "Replacement Decisions with Maintenance Under Uncertainty: An Imbedded Optimal Control Model," Operations Research, INFORMS, vol. 52(5), pages 785-794, October.
    10. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.
    11. Rommert Dekker & Eric Smeitink, 1994. "Preventive maintenance at opportunities of restricted duration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 335-353, April.
    12. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    13. Andrei Sleptchenko & M. Eric Johnson, 2015. "Maintaining Secure and Reliable Distributed Control Systems," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 103-117, February.
    14. Wallace J. Hopp & Suresh K. Nair, 1991. "Timing replacement decisions under discontinuous technological change," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 203-220, April.
    15. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    16. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    17. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    18. Nooshin Salari & Viliam Makis, 2020. "Application of Markov renewal theory and semi‐Markov decision processes in maintenance modeling and optimization of multi‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 548-558, October.
    19. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    20. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:35:y:1988:i:5:p:447-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.