IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i4p613-631.html
   My bibliography  Save this article

Two‐machine flow shop no‐wait scheduling with a nonavailability interval

Author

Listed:
  • Mikhail A. Kubzin
  • Vitaly A. Strusevich

Abstract

We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004

Suggested Citation

  • Mikhail A. Kubzin & Vitaly A. Strusevich, 2004. "Two‐machine flow shop no‐wait scheduling with a nonavailability interval," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 613-631, June.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:4:p:613-631
    DOI: 10.1002/nav.10118
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10118
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M-L Espinouse & P Formanowicz & B Penz, 2001. "Complexity results and approximation algorithms for the two machine no-wait flow-shop with limited machine availability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(1), pages 116-121, January.
    2. Schmidt, Gunter, 2000. "Scheduling with limited machine availability," European Journal of Operational Research, Elsevier, vol. 121(1), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdennour Azerine & Mourad Boudhar & Djamal Rebaine, 2022. "A two-machine no-wait flow shop problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 168-199, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    2. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    3. Allaoui, H. & Lamouri, S. & Artiba, A. & Aghezzaf, E., 2008. "Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 112(1), pages 161-167, March.
    4. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    5. Hongying Li & Chunjie Su, 2011. "An optimal semi-online algorithm for 2-machine scheduling with an availability constraint," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 153-165, August.
    6. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    7. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    8. Guohua Wan & Xiangtong Qi, 2010. "Scheduling with variable time slot costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(2), pages 159-171, March.
    9. Huo, Yumei & Zhao, Hairong, 2015. "Total completion time minimization on multiple machines subject to machine availability and makespan constraints," European Journal of Operational Research, Elsevier, vol. 243(2), pages 547-554.
    10. Zribi, N. & El Kamel, A. & Borne, P., 2008. "Minimizing the makespan for the MPM job-shop with availability constraints," International Journal of Production Economics, Elsevier, vol. 112(1), pages 151-160, March.
    11. Hnaien, Faicel & Yalaoui, Farouk & Mhadhbi, Ahmed, 2015. "Makespan minimization on a two-machine flowshop with an availability constraint on the first machine," International Journal of Production Economics, Elsevier, vol. 164(C), pages 95-104.
    12. Liao, Ching-Jong & Shyur, Der-Lin & Lin, Chien-Hung, 2005. "Makespan minimization for two parallel machines with an availability constraint," European Journal of Operational Research, Elsevier, vol. 160(2), pages 445-456, January.
    13. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    14. Shabtay, Dvir & Zofi, Moshe, 2018. "Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 191-200.
    15. Xu, Dehua & Wan, Long & Liu, Aihua & Yang, Dar-Li, 2015. "Single machine total completion time scheduling problem with workload-dependent maintenance duration," Omega, Elsevier, vol. 52(C), pages 101-106.
    16. Imed Kacem & Hans Kellerer & Yann Lanuel, 2015. "Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 403-412, October.
    17. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    18. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    19. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    20. Huo, Yumei & Zhao, Hairong, 2018. "Two machine scheduling subject to arbitrary machine availability constraint," Omega, Elsevier, vol. 76(C), pages 128-136.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:4:p:613-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.