IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i5p709-719.html
   My bibliography  Save this article

Single‐machine scheduling with dynamic arrivals: Decomposition results and an improved algorithm

Author

Listed:
  • Suresh Chand
  • Rodney Traub
  • Reha Uzsoy

Abstract

This article considers the single‐machine dynamic scheduling problem where the jobs have different arrival times and the objective is to minimize the sum of completion times. This problem is known to be strongly NP‐hard. We develop decomposition results for this problem such that a large problem can be solved by combining optimal solutions for several smaller problems. The decomposition results can be used with any implicit enumeration method to develop an optimal algorithm. Our computational experiment indicates that the computational efficiency of the currently best available branch‐and‐bound algorithm can be improved with the use of our decomposition results. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Suresh Chand & Rodney Traub & Reha Uzsoy, 1996. "Single‐machine scheduling with dynamic arrivals: Decomposition results and an improved algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 709-719, August.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:5:p:709-719
    DOI: 10.1002/(SICI)1520-6750(199608)43:53.0.CO;2-9
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199608)43:53.0.CO;2-9
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199608)43:53.0.CO;2-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Potts, C. N. & Van Wassenhove, L. N., 1983. "An algorithm for single machine sequencing with deadlines to minimize total weighted completion time," European Journal of Operational Research, Elsevier, vol. 12(4), pages 379-387, April.
    2. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total flow time with unequal release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 859-875, October.
    3. Lucio Bianco & Salvatore Ricciardelli, 1982. "Scheduling of a single machine to minimize total weighted completion time subject to release dates," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(1), pages 151-167, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Baptiste & Ruslan Sadykov, 2009. "On scheduling a single machine to minimize a piecewise linear objective function: A compact MIP formulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 487-502, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Baptiste & Ruslan Sadykov, 2009. "On scheduling a single machine to minimize a piecewise linear objective function: A compact MIP formulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 487-502, September.
    2. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total flow time with unequal release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 859-875, October.
    3. Reza H. Ahmadi & Uttarayan Bagchi, 1990. "Lower bounds for single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(6), pages 967-979, December.
    4. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Jouglet, Antoine & Savourey, David & Carlier, Jacques & Baptiste, Philippe, 2008. "Dominance-based heuristics for one-machine total cost scheduling problems," European Journal of Operational Research, Elsevier, vol. 184(3), pages 879-899, February.
    7. Cheng, Jinliang & Steiner, George & Stephenson, Paul, 2001. "A computational study with a new algorithm for the three-machine permutation flow-shop problem with release times," European Journal of Operational Research, Elsevier, vol. 130(3), pages 559-575, May.
    8. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    9. Hongfeng Wang & Min Huang & Junwei Wang, 2019. "An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2733-2742, October.
    10. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
    11. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    12. K. H. Adjallah & K. P. Adzakpa, 2007. "Minimizing maintenance cost involving flow-time and tardiness penalty with unequal release dates," Journal of Risk and Reliability, , vol. 221(1), pages 57-65, March.
    13. Akturk, M. Selim & Ozdemir, Deniz, 2001. "A new dominance rule to minimize total weighted tardiness with unequal release dates," European Journal of Operational Research, Elsevier, vol. 135(2), pages 394-412, December.
    14. Martin W. P. Savelsbergh & R. N. Uma & Joel Wein, 2005. "An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 123-136, February.
    15. Jorge M. S. Valente & Rui A. F. S. Alves, 2003. "An Exact Approach to Early/Tardy Scheduling with Release Dates," FEP Working Papers 129, Universidade do Porto, Faculdade de Economia do Porto.
    16. Reza Ahmadi & Uttarayan Bagchi & Thomas A. Roemer, 2005. "Coordinated scheduling of customer orders for quick response," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 493-512, September.
    17. Chang, Pei-Chann & Hsieh, Jih-Chang & Liu, Chen-Hao, 2006. "A case-injected genetic algorithm for single machine scheduling problems with release time," International Journal of Production Economics, Elsevier, vol. 103(2), pages 551-564, October.
    18. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    19. Wang, Chengen & Chu, Chengbin & Proth, Jean-Marie, 1996. "Efficient heuristic and optimal approaches for n/2/F/[sigma]Ci scheduling problems," International Journal of Production Economics, Elsevier, vol. 44(3), pages 225-237, July.
    20. Hariri, A. M. A. & Potts, C. N., 1997. "A branch and bound algorithm for the two-stage assembly scheduling problem," European Journal of Operational Research, Elsevier, vol. 103(3), pages 547-556, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:5:p:709-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.