IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v38y1991i4p469-494.html
   My bibliography  Save this article

A survey of the search theory literature

Author

Listed:
  • Stanley J. Benkoski
  • Michael G. Monticino
  • James R. Weisinger

Abstract

This article provides a survey of published works in search theory.

Suggested Citation

  • Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
  • Handle: RePEc:wly:navres:v:38:y:1991:i:4:p:469-494
    DOI: 10.1002/1520-6750(199108)38:43.0.CO;2-E
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199108)38:43.0.CO;2-E
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199108)38:43.0.CO;2-E?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James N. Eagle & James R. Yee, 1990. "An Optimal Branch-and-Bound Procedure for the Constrained Path, Moving Target Search Problem," Operations Research, INFORMS, vol. 38(1), pages 110-114, February.
    2. Edward P. Loane, 1971. "An Algorithm to Solve Finite Separable Single-Constrained Optimization Problems," Operations Research, INFORMS, vol. 19(6), pages 1477-1493, October.
    3. Nelson Blachman & Frank Proschan, 1959. "Optimum Search for Objects Having Unknown Arrival Times," Operations Research, INFORMS, vol. 7(5), pages 625-638, October.
    4. Kenneth R. Chelst, 1981. "A differential equation model of search for randomly arriving and departing targets," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(3), pages 407-422, September.
    5. James M. Dobbie, 1963. "Search theory: A sequential approach," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 10(1), pages 323-334, March.
    6. Milton C. Chew, 1973. "Optimal Stopping in a Discrete Search Problem," Operations Research, INFORMS, vol. 21(3), pages 741-747, June.
    7. Philip H. Enslow, 1966. "A bibliography of search theory and reconnaissance theory literature," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 13(2), pages 177-202, June.
    8. Joseph B. Kadane, 1978. "A Characterization of the Rau Class of Sequential Problems," Mathematics of Operations Research, INFORMS, vol. 3(1), pages 42-56, February.
    9. Brian Gluss, 1959. "An Optimum Policy for Detecting a Fault in a Complex System," Operations Research, INFORMS, vol. 7(4), pages 468-477, August.
    10. George Kimeldorf & Furman H. Smith, 1979. "Binomial Searching for a Random Number of Multinomially Hidden Objects," Management Science, INFORMS, vol. 25(11), pages 1115-1126, November.
    11. Nelson M. Blachman, 1959. "Prolegomena to optimum discrete search procedures," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(4), pages 273-281, December.
    12. Marc Mangel, 1982. "Technical Note—Probability of Success in the Search for a Moving Target," Operations Research, INFORMS, vol. 30(1), pages 216-222, February.
    13. Hugh Everett, 1963. "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, INFORMS, vol. 11(3), pages 399-417, June.
    14. Udo Lössner & Ingo Wegener, 1982. "Discrete Sequential Search with Positive Switch Cost," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 426-440, August.
    15. Y. C. Kan, 1977. "Optimal Search of a Moving Target," Operations Research, INFORMS, vol. 25(5), pages 864-870, October.
    16. Jacques de Guenin, 1961. "Optimum Distribution of Effort: An Extension of the Koopman Basic Theory," Operations Research, INFORMS, vol. 9(1), pages 1-7, February.
    17. Joseph B. Kadane, 1971. "Optimal Whereabouts Search," Operations Research, INFORMS, vol. 19(4), pages 894-904, August.
    18. Corwin, Thomas L., 1979. "A representation for the posterior distribution of the location of a moving target," Stochastic Processes and their Applications, Elsevier, vol. 9(1), pages 1-17, August.
    19. A. Charnes & W. W. Cooper, 1958. "The Theory of Search: Optimum Distribution of Search Effort," Management Science, INFORMS, vol. 5(1), pages 44-50, October.
    20. James M. Dobbie, 1973. "Some Search Problems with False Contacts," Operations Research, INFORMS, vol. 21(4), pages 907-925, August.
    21. Lawrence D. Stone, 1983. "Feature Article—The Process of Search Planning: Current Approaches and Continuing Problems," Operations Research, INFORMS, vol. 31(2), pages 207-233, April.
    22. James M. Dobbie, 1974. "A Two-Cell Model of Search for a Moving Target," Operations Research, INFORMS, vol. 22(1), pages 79-92, February.
    23. John M. Cozzolino, 1972. "Sequential Search for an Unknown Number of Objects of Nonuniform Size," Operations Research, INFORMS, vol. 20(2), pages 293-308, April.
    24. F. P. Kelly, 1982. "A Remark on Search and Sequencing Problems," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 154-157, February.
    25. Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
    26. James N. Eagle, 1984. "The Optimal Search for a Moving Target When the Search Path Is Constrained," Operations Research, INFORMS, vol. 32(5), pages 1107-1115, October.
    27. Arnold Barnett, 1976. "On Searching for Events of Limited Duration," Operations Research, INFORMS, vol. 24(3), pages 438-451, June.
    28. Morton Klein, 1968. "Note on sequential search," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 15(3), pages 469-476, September.
    29. Y. C. Kan, 1974. "Technical Note—A Counterexample for an Optimal Search-and-Stop Model," Operations Research, INFORMS, vol. 22(4), pages 889-892, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.
    2. Abd-Elmoneim Anwar Mohamed & Mohamed Abd Allah El-Hadidy, 2013. "Optimal Multiplicative Generalized Linear Search Plan for a Discrete Random Walker," Journal of Optimization, Hindawi, vol. 2013, pages 1-13, July.
    3. Steve Alpern, 2002. "Rendezvous Search: A Personal Perspective," Operations Research, INFORMS, vol. 50(5), pages 772-795, October.
    4. Benoit Duvocelle & János Flesch & Hui Min Shi & Dries Vermeulen, 2021. "Search for a moving target in a competitive environment," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 547-557, June.
    5. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    6. T. C. E. Cheng & B. Kriheli & E. Levner & C. T. Ng, 2021. "Scheduling an autonomous robot searching for hidden targets," Annals of Operations Research, Springer, vol. 298(1), pages 95-109, March.
    7. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2007. "Constrained minimax optimization of continuous search efforts for the detection of a stationary target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 589-601, September.
    8. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    9. Reiter, Johannes & Mauch, Franz & Jäckle, Josef, 1992. "Blocking transitions in lattice spin models with directed kinetic constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(3), pages 493-498.
    10. Timothy H. Chung & Rachel T. Silvestrini, 2014. "Modeling and analysis of exhaustive probabilistic search," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 164-178, March.
    11. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    12. Joseph B. Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    13. Gregg S. Gonsalves & Forrest W. Crawford & Paul D. Cleary & Edward H. Kaplan & A. David Paltiel, 2018. "An Adaptive Approach to Locating Mobile HIV Testing Services," Medical Decision Making, , vol. 38(2), pages 262-272, February.
    14. Hoam Chung & Elijah Polak & Johannes O. Royset & Shankar Sastry, 2011. "On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 804-820, December.
    15. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.
    16. Reiter, J. & Jäckle, J., 1995. "Dynamics of the symmetrically constrained Ising chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 215(3), pages 311-330.
    17. Endre Csóka & Thomas Lidbetter, 2016. "The solution to an open problem for a caching game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(1), pages 23-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
    2. J F J Vermeulen & M van den Brink, 2005. "The search for an alerted moving target," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 514-525, May.
    3. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    4. Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022. "A competitive search game with a moving target," European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
    5. Robert F. Dell & James N. Eagle & Gustavo Henrique Alves Martins & Almir Garnier Santos, 1996. "Using multiple searchers in constrained‐path, moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 463-480, June.
    6. Lau, Haye & Huang, Shoudong & Dissanayake, Gamini, 2008. "Discounted MEAN bound for the optimal searcher path problem with non-uniform travel times," European Journal of Operational Research, Elsevier, vol. 190(2), pages 383-397, October.
    7. Hong, Sung-Pil & Cho, Sung-Jin & Park, Myoung-Ju, 2009. "A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search," European Journal of Operational Research, Elsevier, vol. 193(2), pages 351-364, March.
    8. Lawrence D. Stone & Alan R. Washburn, 1991. "Introduction special issue on search theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 465-468, August.
    9. Joseph B. Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    10. Michael P. Atkinson & Moshe Kress & Roberto Szechtman, 2017. "To catch an intruder: Part A—uncluttered scenario," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 29-40, February.
    11. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    12. Bourque, François-Alex, 2019. "Solving the moving target search problem using indistinguishable searchers," European Journal of Operational Research, Elsevier, vol. 275(1), pages 45-52.
    13. Alan R. Washburn, 1998. "Branch and bound methods for a search problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 243-257, April.
    14. Joseph Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
    15. Mehrez, Abraham & Rabinowitz, Gad, 1995. "A note on the rule for sequential selection," European Journal of Operational Research, Elsevier, vol. 81(1), pages 166-175, February.
    16. Rostami, Salim & Creemers, Stefan & Wei, Wenchao & Leus, Roel, 2019. "Sequential testing of n-out-of-n systems: Precedence theorems and exact methods," European Journal of Operational Research, Elsevier, vol. 274(3), pages 876-885.
    17. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.
    18. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    19. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2007. "Constrained minimax optimization of continuous search efforts for the detection of a stationary target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 589-601, September.
    20. Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:38:y:1991:i:4:p:469-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.