IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v56y2005i5d10.1057_palgrave.jors.2601847.html
   My bibliography  Save this article

The search for an alerted moving target

Author

Listed:
  • J F J Vermeulen

    (TNO Physics and Electronics Laboratory)

  • M van den Brink

    (TNO Physics and Electronics Laboratory)

Abstract

We investigate a two-sided, multi-stage search problem where a continuous search effort is made by one or more search units to detect a moving target in a continuous target space, under noisy detection conditions. A specific example of this problem is hunting for an enemy submarine by naval forces. So far, this problem has not been solved, because of the difficulty of predicting the target's behaviour. In finding promising routes for the search units, a heuristic has been developed. To obtain these routes, at every decision moment in time an optimal point to go to must be determined. This amounts to finding at every decision moment an optimum of a function that changes over time.

Suggested Citation

  • J F J Vermeulen & M van den Brink, 2005. "The search for an alerted moving target," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 514-525, May.
  • Handle: RePEc:pal:jorsoc:v:56:y:2005:i:5:d:10.1057_palgrave.jors.2601847
    DOI: 10.1057/palgrave.jors.2601847
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601847
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyn C. Thomas & Alan R. Washburn, 1991. "Dynamic Search Games," Operations Research, INFORMS, vol. 39(3), pages 415-422, June.
    2. Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
    3. James N. Eagle, 1984. "The Optimal Search for a Moving Target When the Search Path Is Constrained," Operations Research, INFORMS, vol. 32(5), pages 1107-1115, October.
    4. James N. Eagle & James R. Yee, 1990. "An Optimal Branch-and-Bound Procedure for the Constrained Path, Moving Target Search Problem," Operations Research, INFORMS, vol. 38(1), pages 110-114, February.
    5. K. E. Trummel & J. R. Weisinger, 1986. "Technical Note—The Complexity of the Optimal Searcher Path Problem," Operations Research, INFORMS, vol. 34(2), pages 324-327, April.
    6. John M. Danskin, 1968. "A Helicopter Versus Submarine Search Game," Operations Research, INFORMS, vol. 16(3), pages 509-517, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong-Xu Zhu, 2010. "Generalized Projective Synchronization And Parameters Estimation Of Two New Hyperchaotic Systems With Fully Uncertain Parameters," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 249-259.
    2. Morin, Michael & Abi-Zeid, Irène & Quimper, Claude-Guy, 2023. "Ant colony optimization for path planning in search and rescue operations," European Journal of Operational Research, Elsevier, vol. 305(1), pages 53-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Dell & James N. Eagle & Gustavo Henrique Alves Martins & Almir Garnier Santos, 1996. "Using multiple searchers in constrained‐path, moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 463-480, June.
    2. Hong, Sung-Pil & Cho, Sung-Jin & Park, Myoung-Ju, 2009. "A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search," European Journal of Operational Research, Elsevier, vol. 193(2), pages 351-364, March.
    3. Hohzaki, Ryusuke, 2006. "Search allocation game," European Journal of Operational Research, Elsevier, vol. 172(1), pages 101-119, July.
    4. Bourque, François-Alex, 2019. "Solving the moving target search problem using indistinguishable searchers," European Journal of Operational Research, Elsevier, vol. 275(1), pages 45-52.
    5. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    6. Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
    7. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
    8. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    9. Lawrence D. Stone & Alan R. Washburn, 1991. "Introduction special issue on search theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 465-468, August.
    10. Michael P. Atkinson & Moshe Kress & Roberto Szechtman, 2017. "To catch an intruder: Part A—uncluttered scenario," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 29-40, February.
    11. Alan R. Washburn, 1998. "Branch and bound methods for a search problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 243-257, April.
    12. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    13. Hohzaki, Ryusuke & Iida, Koji, 2000. "A search game when a search path is given," European Journal of Operational Research, Elsevier, vol. 124(1), pages 114-124, July.
    14. Hohzaki, Ryusuke & Iida, Koji, 1997. "Optimal strategy of route and look for the path constrained search problem with reward criterion," European Journal of Operational Research, Elsevier, vol. 100(1), pages 236-249, July.
    15. Adel Guitouni & Hatem Masri, 2014. "An orienteering model for the search and rescue problem," Computational Management Science, Springer, vol. 11(4), pages 459-473, October.
    16. Morin, Michael & Abi-Zeid, Irène & Quimper, Claude-Guy, 2023. "Ant colony optimization for path planning in search and rescue operations," European Journal of Operational Research, Elsevier, vol. 305(1), pages 53-63.
    17. Lau, Haye & Huang, Shoudong & Dissanayake, Gamini, 2008. "Discounted MEAN bound for the optimal searcher path problem with non-uniform travel times," European Journal of Operational Research, Elsevier, vol. 190(2), pages 383-397, October.
    18. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    19. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    20. Ryusuke Hohzaki, 2008. "A search game taking account of attributes of searching resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 76-90, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:56:y:2005:i:5:d:10.1057_palgrave.jors.2601847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.