IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v34y1987i3p381-398.html
   My bibliography  Save this article

Algorithmic and approximation analyses of the shorter queue model

Author

Listed:
  • B. M. Rao
  • M. J. M. Posner

Abstract

A system of two parallel queues where the arrivals from a single stream of customers join the shorter queue is considered. Arrivals form a homogeneous Poisson stream and the service times in each of the two queues are independent exponential variates. By treating one of the queues as bounded, the steady‐state probability vector for the system can be expressed in a modified matrix‐geometric form and can be computed efficiently. Computational procedures for the sojourn time distribution and characteristics of the departure stream are developed. Some numerical results are presented, and based on these results an efficient approximation scheme for the model is developed which can be readily extended to systems with more than two parallel queues.

Suggested Citation

  • B. M. Rao & M. J. M. Posner, 1987. "Algorithmic and approximation analyses of the shorter queue model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 381-398, June.
  • Handle: RePEc:wly:navres:v:34:y:1987:i:3:p:381-398
    DOI: 10.1002/1520-6750(198706)34:33.0.CO;2-K
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198706)34:33.0.CO;2-K
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198706)34:33.0.CO;2-K?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gertsbakh, Ilya, 1984. "The shorter queue problem: A numerical study using the matrix-geometric solution," European Journal of Operational Research, Elsevier, vol. 15(3), pages 374-381, March.
    2. Grassmann, WK, 1980. "Transient and steady state results for two parallel queues," Omega, Elsevier, vol. 8(1), pages 105-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. P. C. Blanc, 1992. "The Power-Series Algorithm Applied to the Shortest-Queue Model," Operations Research, INFORMS, vol. 40(1), pages 157-167, February.
    2. Danielle Tibi, 2019. "Martingales and buffer overflow for the symmetric shortest queue model," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 153-190, October.
    3. Blanc, J.P.C., 2009. "Bad luck when joining the shortest queue," European Journal of Operational Research, Elsevier, vol. 195(1), pages 167-173, May.
    4. Plinio S. Dester & Christine Fricker & Danielle Tibi, 2017. "Stationary analysis of the shortest queue problem," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 211-243, December.
    5. P. Patrick Wang, 2000. "Workload distribution of discrete‐time parallel queues with two servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(5), pages 440-454, August.
    6. Zhang, Zhongju & Daigle, John, 2012. "Analysis of job assignment with batch arrivals among heterogeneous servers," European Journal of Operational Research, Elsevier, vol. 217(1), pages 149-161.
    7. M. Saxena & I. Dimitriou & S. Kapodistria, 2020. "Analysis of the shortest relay queue policy in a cooperative random access network with collisions," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 39-75, February.
    8. Nur Sunar & Yichen Tu & Serhan Ziya, 2021. "Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive," Management Science, INFORMS, vol. 67(6), pages 3785-3802, June.
    9. Yina Lu & Andrés Musalem & Marcelo Olivares & Ariel Schilkrut, 2013. "Measuring the Effect of Queues on Customer Purchases," Management Science, INFORMS, vol. 59(8), pages 1743-1763, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Saxena & I. Dimitriou & S. Kapodistria, 2020. "Analysis of the shortest relay queue policy in a cooperative random access network with collisions," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 39-75, February.
    2. J. P. C. Blanc, 1992. "The Power-Series Algorithm Applied to the Shortest-Queue Model," Operations Research, INFORMS, vol. 40(1), pages 157-167, February.
    3. Boronico, Jess S. & Siegel, Philip H., 1998. "Capacity planning for toll roadways incorporating consumer wait time costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 297-310, May.
    4. Chaithanya Bandi & Dimitris Bertsimas & Nataly Youssef, 2018. "Robust transient analysis of multi-server queueing systems and feed-forward networks," Queueing Systems: Theory and Applications, Springer, vol. 89(3), pages 351-413, August.
    5. Nur Sunar & Yichen Tu & Serhan Ziya, 2021. "Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive," Management Science, INFORMS, vol. 67(6), pages 3785-3802, June.
    6. Danielle Tibi, 2019. "Martingales and buffer overflow for the symmetric shortest queue model," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 153-190, October.
    7. Chaithanya Bandi & Nikolaos Trichakis & Phebe Vayanos, 2019. "Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems," Management Science, INFORMS, vol. 65(1), pages 152-187, January.
    8. P. Patrick Wang, 2000. "Workload distribution of discrete‐time parallel queues with two servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(5), pages 440-454, August.
    9. Kevin Granville & Steve Drekic, 2021. "The unobserved waiting customer approximation," Queueing Systems: Theory and Applications, Springer, vol. 99(3), pages 345-396, December.
    10. Zhang, Zhongju & Daigle, John, 2012. "Analysis of job assignment with batch arrivals among heterogeneous servers," European Journal of Operational Research, Elsevier, vol. 217(1), pages 149-161.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:34:y:1987:i:3:p:381-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.