IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v39y2015i2p110-122.html
   My bibliography  Save this article

Resource conservation strategies for rice‐wheat cropping systems on partially reclaimed sodic soils of the Indo‐Gangetic region, and their effects on soil carbon

Author

Listed:
  • V.K. Mishra
  • S. Srivastava
  • A.K. Bhardwaj
  • D.K. Sharma
  • Y.P. Singh
  • A.K. Nayak

Abstract

The Indo‐Gangetic plain is characterized by intensive agriculture, largely by resource‐poor small and marginal farmers. Vast swathes of salt‐affected areas in the region provide both challenges and opportunities to bolster food security and sequester carbon after reclamation. Sustainable management of reclaimed soils via resource conservation strategies, such as residue retention, is key to the prosperity of the farmer, as well as increases the efficiency of expensive initiatives to further reclaim sodic land areas, which currently lay barren. After five years of experimentation on resource conservation strategies for rice‐wheat systems on partially reclaimed sodic soils of the Indo‐Gangetic region, we evaluated changes in different soil carbon pools and crop yield. Out of all resource conservation techniques which were tested, rice‐wheat crop residue addition (30% of total production) was most effective in increasing soil organic carbon (SOC). In rice, without crop residue addition (WCR), soils under zero‐tillage with transplanting, summer ploughing with transplanting and direct seeding with brown manuring showed a significant increase in SOC over the control (puddling in rice, conventional tillage in wheat). In these treatments relatively higher levels of carbon were attained in all aggregate fractions compared to the control. Soil aggregate sizes in meso (0.25‐2.0 mm) and macro (2‐8 mm) ranges increased, whereas micro (

Suggested Citation

  • V.K. Mishra & S. Srivastava & A.K. Bhardwaj & D.K. Sharma & Y.P. Singh & A.K. Nayak, 2015. "Resource conservation strategies for rice‐wheat cropping systems on partially reclaimed sodic soils of the Indo‐Gangetic region, and their effects on soil carbon," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 110-122, May.
  • Handle: RePEc:wly:natres:v:39:y:2015:i:2:p:110-122
    DOI: 10.1111/1477-8947.12071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-8947.12071
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-8947.12071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ladha, J.K. & Fischer, K.S. & Hossain, M. & Hobbs, P.R. & Hardy, B., 2000. "Improving the.Productivity and Sustainability of Rice-Wheat Systems of the lndo-Gangetic Plains: A Synthesis of NARS-IRRI Partnership Research," IRRI Discussion Papers 287597, International Rice Research Institute (IRRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifu Zhang & Wancheng Wang & Wei Yuan & Ruihong Zhang & Xiaobo Xi, 2021. "Cattle Manure Application and Combined Straw Mulching Enhance Maize ( Zea mays L.) Growth and Water Use for Rain-Fed Cropping System of Coastal Saline Soils," Agriculture, MDPI, vol. 11(8), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    2. Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    3. Muhammad Sohail Memon & Jun Guo & Ahmed Ali Tagar & Nazia Perveen & Changying Ji & Shamim Ara Memon & Noreena Memon, 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    4. R. Wassmann & H.U. Neue & J.K. Ladha & M.S. Aulakh, 2004. "Mitigating Greenhouse Gas Emissions from Rice-Wheat Cropping Systems in Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 65-90, March.
    5. Sekar, I. & Pal, Suresh, 2012. "Rice and Wheat Crop Productivity in the Indo-Gangetic Plains of India: Changing Pattern of Growth and Future Strategies," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-15.
    6. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    7. Raghuveer Singh & Dharam Bir Yadav & N. Ravisankar & Ashok Yadav & Harpreet Singh, 2020. "Crop residue management in rice–wheat cropping system for resource conservation and environmental protection in north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 3871-3896, June.
    8. Gourisankar Pradhan & Ram Swaroop Meena, 2022. "Diversity in the Rice–Wheat System with Genetically Modified Zinc and Iron-Enriched Varieties to Achieve Nutritional Security," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    9. Vasisht, A.K. & Kumar, S. Sujith & Aggarwal, P.K. & Kalra, N. & Pathak, H. & Joshi, H.C. & Choudhary, R.C., 2007. "An Integrated Evaluation of Trade-Offs between Environmental Risk Factors and Food Production Using Interactive Multiple Goal Linear Programming – A Case Study of Haryana," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 62(3), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:39:y:2015:i:2:p:110-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.