IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i4p1326-1346.html
   My bibliography  Save this article

Common Mutual Information Selection Algorithm and Its Application on Combination Forecasting

Author

Listed:
  • Chenqing Shen
  • Huayou Chen

Abstract

The subset selection of individual prediction methods is gradually becoming a hot topic. Among numerous forecasts, identifying the optimal subset approach has become a major focal point of research. To address this issue, the paper introduces a novel method based on information theory, which is called common mutual information (CMI) selection algorithm. This optimal subset selection method not only simultaneously considers the relationships of three factors, which include the candidate feature set, the selected feature set, and the actual time series, but also provides a more precise treatment of these relationships. Therefore, CMI algorithm employs the mutual information (MI) shared among the three factors as the criterion for selection and improves the accuracy of the redundancy or correlation measure for existing algorithms. Furthermore, it overcomes the deficiency of calculating MI between the candidate subset and the actual time series. Existing algorithms use the average MI values between individual elements within the subset and the actual sequence; this paper takes the selected subset as a multidimensional input for MI computation, thus reducing computational errors. Finally, the proposed algorithm is compared with two other approaches of the MI algorithm, the Max‐Relevance and Min‐Redundancy (mRMR) algorithm in both theoretical and empirical aspects. The experiments are illustrated to show the effectiveness and superiority of CMI algorithm.

Suggested Citation

  • Chenqing Shen & Huayou Chen, 2025. "Common Mutual Information Selection Algorithm and Its Application on Combination Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1326-1346, July.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1326-1346
    DOI: 10.1002/for.3240
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3240
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    2. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    3. Zhenni Ding & Huayou Chen & Ligang Zhou, 2023. "Using shapely values to define subgroups of forecasts for combining," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 905-923, July.
    4. Xun Wang & Fotios Petropoulos, 2016. "To select or to combine? The inventory performance of model and expert forecasts," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5271-5282, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Minsoo & Park, Taeseop & Jeong, Jaeik & Kim, Hongseok, 2023. "Stochastic optimization of home energy management system using clustered quantile scenario reduction," Applied Energy, Elsevier, vol. 349(C).
    2. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    3. Zhuolin Wu & Jiaqi Zhou & Xiaobing Yu, 2025. "Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition," Sustainability, MDPI, vol. 17(12), pages 1-37, June.
    4. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    5. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    6. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    7. Yadong Wang & Qiang Meng, 2019. "Integrated method for forecasting container slot booking in intercontinental liner shipping service," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 653-674, September.
    8. Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
    9. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    10. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    11. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    12. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    13. Sel, Burakhan & Minner, Stefan, 2022. "A hedging policy for seaborne forward freight markets based on probabilistic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    14. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    15. Mirko S. Bozanic‐Leal & Marcel Goic & Charles Thraves, 2025. "Affinities and Complementarities of Methods and Information Sets in the Estimation of Prices in Real Estate Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 356-375, March.
    16. Sanlei Dang & Long Peng & Jingming Zhao & Jiajie Li & Zhengmin Kong, 2022. "A Quantile Regression Random Forest-Based Short-Term Load Probabilistic Forecasting Method," Energies, MDPI, vol. 15(2), pages 1-20, January.
    17. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    18. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    19. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
    20. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1326-1346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.