IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2875.html
   My bibliography  Save this article

Similarity network aggregation for the analysis of glacier ecosystems

Author

Listed:
  • Roberto Ambrosini
  • Federica Baccini
  • Lucio Barabesi

Abstract

The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.

Suggested Citation

  • Roberto Ambrosini & Federica Baccini & Lucio Barabesi, 2025. "Similarity network aggregation for the analysis of glacier ecosystems," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2875
    DOI: 10.1002/env.2875
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2875
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pavel N. Krivitsky & Laura M. Koehly & Christopher Steven Marcum, 2020. "Exponential-Family Random Graph Models for Multi-Layer Networks," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 630-659, September.
    2. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. P. Robert & Y. Escoufier, 1976. "A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(3), pages 257-265, November.
    4. P W MacDonald & E Levina & J Zhu, 2022. "Latent space models for multiplex networks with shared structure [Inference for multiple heterogeneous networks with a common invariant subspace]," Biometrika, Biometrika Trust, vol. 109(3), pages 683-706.
    5. Baccini, Federica & Barabesi, Lucio & Baccini, Alberto & Khelfaoui, Mahdi & Gingras, Yves, 2022. "Similarity network fusion for scholarly journals," Journal of Informetrics, Elsevier, vol. 16(1).
    6. Pierre Barbillon & Sophie Donnet & Emmanuel Lazega & Avner Bar-Hen, 2017. "Stochastic block models for multiplex networks: an application to a multilevel network of researchers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 295-314, January.
    7. Nees Jan van Eck & Ludo Waltman, 2009. "How to normalize cooccurrence data? An analysis of some well‐known similarity measures," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1635-1651, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niccolò Comerio & Fernanda Strozzi, 2019. "Tourism and its economic impact: A literature review using bibliometric tools," Tourism Economics, , vol. 25(1), pages 109-131, February.
    2. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    3. Vuong, Quan-Hoang & Huyen, Nguyen Thanh Thanh & Pham, Thanh-Hang & Phuong, Luong Anh & Nguyen, Minh-Hoang, 2020. "Mapping the intellectual and conceptual structure of research on gender issues in the family business: A bibliometric review," OSF Preprints jgnrw, Center for Open Science.
    4. Tom Broekel & Matthias Brachert, 2015. "The structure and evolution of inter-sectoral technological complementarity in R&D in Germany from 1990 to 2011," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 755-785, September.
    5. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    6. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    7. Cathelijn J. F. Waaijer & Cornelis A. Bochove & Nees Jan Eck, 2011. "On the map: Nature and Science editorials," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 99-112, January.
    8. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    9. Chungil Chae & Jeong-Ha Yim & Jaeeun Lee & Sung Jun Jo & Jeong Rok Oh, 2020. "The Bibliometric Keywords Network Analysis of Human Resource Management Research Trends: The Case of Human Resource Management Journals in South Korea," Sustainability, MDPI, vol. 12(14), pages 1-37, July.
    10. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    11. Duygu Buyukyazici & Leonardo Mazzoni & Massimo Riccaboni & Francesco Serti, 2024. "Workplace skills as regional capabilities: relatedness, complexity and industrial diversification of regions," Regional Studies, Taylor & Francis Journals, vol. 58(3), pages 469-489, March.
    12. Mikel Alayo & Txomin Iturralde & Amaia Maseda & Gloria Aparicio, 2021. "Mapping family firm internationalization research: bibliometric and literature review," Review of Managerial Science, Springer, vol. 15(6), pages 1517-1560, August.
    13. Evi Sachini & Nikolaos Karampekios & Pierpaolo Brutti & Konstantinos Sioumalas-Christodoulou, 2020. "Should I stay or should I go? Using bibliometrics to identify the international mobility of highly educated Greek manpower," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 641-663, October.
    14. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    15. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    16. Marcos Ferasso & Tatiana Beliaeva & Sascha Kraus & Thomas Clauss & Domingo Ribeiro‐Soriano, 2020. "Circular economy business models: The state of research and avenues ahead," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3006-3024, December.
    17. Pierre-Alexandre Balland & David Rigby & Ron Boschma, 2015. "The technological resilience of US cities," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 8(2), pages 167-184.
    18. Vasile-Petru Hategan, 2021. "Promoting the Eco-Dialogue through Eco-Philosophy for Community," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    19. Alexander Wenzel & Pablo Guindos & Manuel Carpio, 2025. "Using Timber in Mid-Rise and Tall Buildings to Construct Our Cities: A Science Mapping Study," Sustainability, MDPI, vol. 17(5), pages 1-30, February.
    20. Massimo Aria & Corrado Cuccurullo & Luca D’Aniello & Michelangelo Misuraca & Maria Spano, 2022. "Thematic Analysis as a New Culturomic Tool: The Social Media Coverage on COVID-19 Pandemic in Italy," Sustainability, MDPI, vol. 14(6), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.