IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i4ne2847.html
   My bibliography  Save this article

Estimation and selection for spatial zero‐inflated count models

Author

Listed:
  • Chung‐Wei Shen
  • Chun‐Shu Chen

Abstract

The count data arise in many scientific areas. Our concerns here focus on spatial count responses with an excessive number of zeros and a set of available covariates. Estimating model parameters and selecting important covariates for spatial zero‐inflated count models are both essential. Importantly, to alleviate deviations from model assumptions, we propose a spatial zero‐inflated Poisson‐like methodology to model this type of data, which relies only on assumptions for the first two moments of spatial count responses. We then design an effective iterative estimation procedure between the generalized estimating equation and the weighted least squares method to respectively estimate the regression coefficients and the variogram of the data model. Moreover, the stabilization of estimators is evaluated via a block jackknife technique. Furthermore, a distribution‐free model selection criterion based on an estimate of the mean squared error of the estimated mean structure is proposed to select the best subset of covariates. The effectiveness of the proposed methodology is demonstrated by simulation studies under various scenarios, and a real dataset regarding the number of maternal deaths in Mozambique is analyzed for illustration.

Suggested Citation

  • Chung‐Wei Shen & Chun‐Shu Chen, 2024. "Estimation and selection for spatial zero‐inflated count models," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:4:n:e2847
    DOI: 10.1002/env.2847
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2847
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    2. Chung-Wei Shen & Yi-Hau Chen, 2012. "Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness," Biometrics, The International Biometric Society, vol. 68(4), pages 1046-1054, December.
    3. Shen, Xiaotong & Huang, Hsin-Cheng, 2006. "Optimal Model Assessment, Selection, and Combination," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 554-568, June.
    4. Oyelola A. Adegboye & Denis H. Y. Leung & You‐Gan Wang, 2018. "Analysis of spatial data with a nested correlation structure," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 329-354, February.
    5. Chun‐Shu Chen & Hong‐Ding Yang & Yang Li, 2014. "A stabilized and versatile spatial prediction method for geostatistical models," Environmetrics, John Wiley & Sons, Ltd., vol. 25(2), pages 127-141, March.
    6. Kong, Maiying & Xu, Sheng & Levy, Steven M. & Datta, Somnath, 2015. "GEE type inference for clustered zero-inflated negative binomial regression with application to dental caries," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 54-66.
    7. Huang, Hsin-Cheng & Chen, Chun-Shu, 2007. "Optimal Geostatistical Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1009-1024, September.
    8. Jian Wang & Cielito C. Reyes-Gibby & Sanjay Shete, 2021. "An Approach to Analyze Longitudinal Zero-Inflated Microbiome Count Data Using Two-Stage Mixed Effects Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 267-290, July.
    9. Osvaldo Loquiha & Niel Hens & Leonardo Chavane & Marleen Temmerman & Nafissa Osman & Christel Faes & Marc Aerts, 2018. "Mapping maternal mortality rate via spatial zero-inflated models for count data: A case study of facility-based maternal deaths from Mozambique," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinpei Imori, 2015. "Model Selection Criterion Based on the Multivariate Quasi-Likelihood for Generalized Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1214-1224, December.
    2. Chung‐Wei Shen & Yi‐Hau Chen, 2018. "Model selection for semiparametric marginal mean regression accounting for within‐cluster subsampling variability and informative cluster size," Biometrics, The International Biometric Society, vol. 74(3), pages 934-943, September.
    3. Jin‐Hua Chen & Chun‐Shu Chen & Meng‐Fan Huang & Hung‐Chih Lin, 2016. "Estimating the Probability of Rare Events Occurring Using a Local Model Averaging," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1855-1870, October.
    4. Wei Pan, 2001. "Model Selection in Estimating Equations," Biometrics, The International Biometric Society, vol. 57(2), pages 529-534, June.
    5. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.
    6. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    7. Katrina N. Burns & Kan Sun & Julius N. Fobil & Richard L. Neitzel, 2016. "Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers," IJERPH, MDPI, vol. 13(1), pages 1-16, January.
    8. Song Guo & Feng Ling & Juan Hou & Jinna Wang & Guiming Fu & Zhenyu Gong, 2014. "Mosquito Surveillance Revealed Lagged Effects of Mosquito Abundance on Mosquito-Borne Disease Transmission: A Retrospective Study in Zhejiang, China," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-8, November.
    9. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    10. Marc-Andreas Muendler & Sascha O. Becker, 2010. "Margins of Multinational Labor Substitution," American Economic Review, American Economic Association, vol. 100(5), pages 1999-2030, December.
    11. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    12. Laura Neumeyer & Anna Gründler & Anna-Luisa Stöber, 2023. "Don’t Worry, Be Happy—Does the CEO’s Personality Mitigate the Negative Effect of Financial Constraints on Employee Satisfaction?," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 71-98, March.
    13. Amy Hinsley & William J Sutherland & Alison Johnston, 2017. "Men ask more questions than women at a scientific conference," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-14, October.
    14. Geraldo F Oliveira & Teresinha R R Oliveira & Adauto T Ikejiri & Mariela P Andraus & Tais F Galvao & Marcus T Silva & Maurício G Pereira, 2014. "Prevalence of Hypertension and Associated Factors in an Indigenous Community of Central Brazil: A Population-Based Study," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    15. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    16. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    17. Beth A. Reboussin & Edward H. Ip & Mark Wolfson, 2008. "Locally dependent latent class models with covariates: an application to under‐age drinking in the USA," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 877-897, October.
    18. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
    20. Mark Rooij, 2018. "Transitional modeling of experimental longitudinal data with missing values," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 107-130, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:4:n:e2847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.