IDEAS home Printed from https://ideas.repec.org/a/wly/coacre/v10y1994i2p409-431.html
   My bibliography  Save this article

A Reexamination of Auditor versus Model Accuracy within the Context of the Going†Concern Opinion Decision

Author

Listed:
  • WILLIAM HOPWOOD
  • JAMES C. McKEOWN
  • JANE F. MUTCHLER

Abstract

. The Cohen Commission and previous research have suggested that auditors' opinions are inferior indicators of bankruptcy relative to the predictions of statistical models. This research reexamines this question in light of two important considerations that make the comparison between audit opinions and model predictions considerably more reflective of the auditors' real†world decision environment. First, the sample is partitioned into stressed and nonstressed observations and the importance of doing so is demonstrated; second, the statistical models and the forecast errors are adjusted so that they reflect the proportion of bankrupt firms actually faced by auditors. The empirical results provide convincing evidence suggesting that the notion established in previous research that auditors' opinions are interior to models in predicting bankruptcy is unfounded. It should be noted, however, that neither the auditors' opinions nor the bankruptcy prediction model are very good predictors of bankruptcy when population proportions, differences in misclassification costs, and financial stress levels are considered. Résumé. Les travaux de recherche de la Commission Cohen et d'autres travaux qui les ont précédés semblent indiquer que les opinions des vérificateurs sont des indicateurs de faillite moins efficaces que les prédictions des modèles statistiques. Les auteurs se penchent à leur tour sur cette question, à la lumière de deux éléments importants qui font en sorte que la comparaison entre les opinions des vérificateurs et les modèles prévisionnels s'inscrit beaucoup plus dans le contexte décisionnel véritable dans lequel travaillent les vérificateurs. D'abord, l'échantillon est scindé en deux groupes d'observations selon la présence ou l'absence de contrainte financière, partage dont les auteurs expliquent l'importance; ensuite, les modèles statistiques et les erreurs prévisionnelles sont ajustés de manière & refléter la proportion des sociétés dont la faillite a été envisagée par le vérificateur. Les résultats empiriques démontrent de façon probante que les conclusions tirées des travaux précédents selon lesquelles les opinions des vérificateurs sont moins efficaces que les modèles en matière de prévision des faillites ne sont pas fondées. Il convient de noter, cependant, que ni les opinions des vérificateurs ni les modèles prévisionnels ne sont des prédicteurs très efficaces des faillites si l'on tient compte des proportions de la population, des différences dans le coût des erreurs de classification et du niveau de contrainte financière.

Suggested Citation

  • WILLIAM HOPWOOD & JAMES C. McKEOWN & JANE F. MUTCHLER, 1994. "A Reexamination of Auditor versus Model Accuracy within the Context of the Going†Concern Opinion Decision," Contemporary Accounting Research, John Wiley & Sons, vol. 10(2), pages 409-431, March.
  • Handle: RePEc:wly:coacre:v:10:y:1994:i:2:p:409-431
    DOI: 10.1111/j.1911-3846.1994.tb00400.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1911-3846.1994.tb00400.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1911-3846.1994.tb00400.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    2. Mutchler, Jf, 1985. "A Multivariate-Analysis Of The Auditors Going-Concern Opinion Decision," Journal of Accounting Research, Wiley Blackwell, vol. 23(2), pages 668-682.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Neter, J, 1966. "Financial Ratios As Predictors Of Failure - Discussion," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 112-118.
    5. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    6. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    7. Wilkerson, Je, 1987. "Selecting Experimental And Comparison Samples For Use In Studies Of Auditor Reporting Decisions," Journal of Accounting Research, Wiley Blackwell, vol. 25(1), pages 161-167.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    9. Kida, T, 1980. "An Investigation Into Auditors Continuity And Related Qualification Judgments," Journal of Accounting Research, Wiley Blackwell, vol. 18(2), pages 506-523.
    10. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    11. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    12. Palepu, Krishna G., 1986. "Predicting takeover targets : A methodological and empirical analysis," Journal of Accounting and Economics, Elsevier, vol. 8(1), pages 3-35, March.
    13. Krishnagopal Menon & Kenneth B. Schwartz, 1987. "An empirical investigation of audit qualification decisions in the presence of going concern uncertainties," Contemporary Accounting Research, John Wiley & Sons, vol. 3(2), pages 302-315, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    2. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    3. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    4. repec:ctc:sdimse:dime21_01 is not listed on IDEAS
    5. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    6. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    7. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    8. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    9. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    10. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    11. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    12. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    13. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    14. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    15. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    16. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    17. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    18. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    19. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    20. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    21. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:coacre:v:10:y:1994:i:2:p:409-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1911-3846 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.