IDEAS home Printed from
   My bibliography  Save this article

Bayesian parameter inference for models of the Black and Scholes type


  • Henryk Gzyl
  • Enrique ter Horst
  • Samuel W. Malone


In this paper, we describe a general method for constructing the posterior distribution of the mean and volatility of the return of an asset satisfying dS=SdX for some simple models of X. Our framework takes as inputs the prior distributions of the parameters of the stochastic process followed by the underlying, as well as the likelihood function implied by the observed price history for the underlying. As an application of our framework, we compute the value at risk (VaR) and conditional VaR (CVaR) measures for the changes in the price of an option implied by the posterior distribution of the volatility of the underlying. The implied VaR and CVaR are more conservative than their classical counterpart, since it takes into account the estimation risk that arises due to parameter uncertainty. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • Henryk Gzyl & Enrique ter Horst & Samuel W. Malone, 2008. "Bayesian parameter inference for models of the Black and Scholes type," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 507-524, November.
  • Handle: RePEc:wly:apsmbi:v:24:y:2008:i:6:p:507-524
    DOI: 10.1002/asmb.709

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    References listed on IDEAS

    1. Karolyi, G. Andrew, 1993. "A Bayesian Approach to Modeling Stock Return Volatility for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 579-594, December.
    2. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    3. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    4. Robert R. Bliss & Nikolaos Panigirtzoglou, 2004. "Option-Implied Risk Aversion Estimates," Journal of Finance, American Finance Association, vol. 59(1), pages 407-446, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Henryk Gzyl & German Molina & Enrique ter Horst, 2009. "Assessment and propagation of input uncertainty in tree‐based option pricing models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 275-308, May.
    3. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.
    4. Cangrejo Esquivel, Álvaro Javier & Tovar Cuevas, José Rafael & García, Isabel Cristina & Manotas Duque, Diego Fernando, 2022. "Estimación clásica y bayesiana de la volatilidad en el modelo de Black-Scholes [Classical and Bayesian estimation of volatility in the Black-Scholes model]," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 34(1), pages 237-262, December .
    5. Shu Wing Ho & Alan Lee & Alastair Marsden, 2011. "Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models," JRFM, MDPI, vol. 4(1), pages 1-23, December.
    6. Chung Choe & SeEun Jung & Ronald L. Oaxaca, 2020. "Identification and decompositions in probit and logit models," Empirical Economics, Springer, vol. 59(3), pages 1479-1492, September.
    7. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    8. Khaledi, Baha-Eldin & Shaked, Moshe, 2010. "Stochastic comparisons of multivariate mixtures," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2486-2498, November.
    9. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    10. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    11. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    12. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    13. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    14. Luiz Vitiello & Ser-Huang Poon, 2022. "Option pricing with random risk aversion," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1665-1684, May.
    15. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    16. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    17. Moshe Buchinsky & Phillip Leslie, 2010. "Educational Attainment and the Changing U.S. Wage Structure: Dynamic Implications on Young Individuals' Choices," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 541-594, July.
    18. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    19. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    20. Ricardo Sabbadini, 2018. "International Reserves Management in a Model of Partial Sovereign Default," Working Papers, Department of Economics 2018_14, University of São Paulo (FEA-USP).

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:24:y:2008:i:6:p:507-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.