IDEAS home Printed from https://ideas.repec.org/a/vrs/timjeb/v15y2022i1p111-126n1007.html
   My bibliography  Save this article

The contribution of statistical models in the field of real estate valuation

Author

Listed:
  • Tothăzan Helga Flavia

    (Department of Accounting, Faculty of economics and Business Administration, Babes-Bolyai University Cluj-Napoca, Cluj-Napoca, Romania)

Abstract

Testing a model in property evaluation can be a difficult task due to the large variety of these models. The most popular models used in valuation are regression and neural networks. This paper applied a systematic review study and presents 11 types of regression models and 9 types of neural network models applied in real estate valuation. Our aim is to provide a tool for model selection applied in real estate valuation. The selection criteria were based on their applicability, user preferences and price estimation performance. The findings were slightly different from our expectations. Multi-Layer Perceptron (MLP) and Multiple Linear Regression (GLM) are the most applied and popular models in valuation.

Suggested Citation

  • Tothăzan Helga Flavia, 2022. "The contribution of statistical models in the field of real estate valuation," Timisoara Journal of Economics and Business, Sciendo, vol. 15(1), pages 111-126.
  • Handle: RePEc:vrs:timjeb:v:15:y:2022:i:1:p:111-126:n:1007
    DOI: 10.2478/tjeb-2022-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/tjeb-2022-0007
    Download Restriction: no

    File URL: https://libkey.io/10.2478/tjeb-2022-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jozef Zurada & Alan S. Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 349-388.
    2. Jozef Zurada & Alan Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, Taylor & Francis Journals, vol. 33(3), pages 349-388, January.
    3. A. Quang Do & G. Grudnitski, 1993. "A Neural Network Analysis of the Effect of Age on Housing Values," Journal of Real Estate Research, American Real Estate Society, vol. 8(2), pages 253-264.
    4. Allan Din & Martin Hoesli & Andre Bender, 2001. "Environmental Variables and Real Estate Prices," Urban Studies, Urban Studies Journal Limited, vol. 38(11), pages 1989-2000, October.
    5. repec:eme:jv0000:eb008022 is not listed on IDEAS
    6. Hans R. Isakson, 1998. "The Review of Real Estate Appraisals Using Multiple Regression Analysis," Journal of Real Estate Research, American Real Estate Society, vol. 15(2), pages 177-190.
    7. Stephen A. Samaha & Wagner A. Kamakura, 2008. "Assessing the Market Value of Real Estate Property with a Geographically Weighted Stochastic Frontier Model," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(4), pages 717-751, December.
    8. W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
    9. Helen X.H. Bao & Alan T.K. Wan, 2004. "On the Use of Spline Smoothing in Estimating Hedonic Housing Price Models: Empirical Evidence Using Hong Kong Data," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 32(3), pages 487-507, September.
    10. repec:eme:jpvi00:14635789710163775 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Doszyń, 2024. "Might expert knowledge improve econometric real estate mass appraisal?," The Journal of Real Estate Finance and Economics, Springer, vol. 69(4), pages 719-740, November.
    2. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    3. Moritz Stang & Bastian Krämer & Cathrine Nagl & Wolfgang Schäfers, 2023. "From human business to machine learning—methods for automating real estate appraisals and their practical implications [Vom Vergleichswertverfahren zum maschinellen Lernen – Methoden zur automatisi," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 9(2), pages 81-108, October.
    4. Felix Lorenz & Jonas Willwersch & Marcelo Cajias & Franz Fuerst, 2023. "Interpretable machine learning for real estate market analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(5), pages 1178-1208, September.
    5. Sebastian Gnat & Mariusz Doszyn, 2020. "Parametric and Non-parametric Methods in Mass Appraisal on Poorly Developed Real Estate Markets," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1230-1245.
    6. Gnat Sebastian, 2020. "Impact of the Regularization of Regression Models on the Results of the Mass Valuation of Real Estate," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 163-176, June.
    7. Doszyń Mariusz, 2020. "Econometric Support of a Mass Valuation Process," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 81-94, June.
    8. Jose A. Rodriguez-Serrano, 2025. "Prototype-based learning for real estate valuation: a machine learning model that explains prices," Annals of Operations Research, Springer, vol. 344(1), pages 287-311, January.
    9. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    10. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    11. Pierluigi Morano & Paolo Rosato & Francesco Tajani & Benedetto Manganelli & Felicia Di Liddo, 2019. "Contextualized Property Market Models vs. Generalized Mass Appraisals: An Innovative Approach," Sustainability, MDPI, vol. 11(18), pages 1-28, September.
    12. Sebastian Gnat, 2021. "Property Mass Valuation on Small Markets," Land, MDPI, vol. 10(4), pages 1-14, April.
    13. Daikun Wang & Victor Jing Li, 2019. "Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    14. Helga Flavia Tothăzan & Adela Deaconu, 2020. "Neuronal Network Artificial Model for Real Estate Appraisal: Logic, controversies, and utility for the Romanian context," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 1093-1100, December.
    15. Horvath, Sabine & Soot, Matthias & Zaddach, Sebastian & Neuner, Hans & Weitkamp, Alexandra, 2021. "Deriving adequate sample sizes for ANN-based modelling of real estate valuation tasks by complexity analysis," Land Use Policy, Elsevier, vol. 107(C).
    16. Silviu-Ionuț BĂBȚAN, 2024. "AUTOMATED EVALUATION MODELS in real estate market: A comparative analysis between linear regression and XGBoost," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(26), pages 1-3.
    17. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    18. Raul-Tomas Mora-Garcia & Maria-Francisca Cespedes-Lopez & V. Raul Perez-Sanchez & Pablo Marti & Juan-Carlos Perez-Sanchez, 2019. "Determinants of the Price of Housing in the Province of Alicante (Spain): Analysis Using Quantile Regression," Sustainability, MDPI, vol. 11(2), pages 1-33, January.
    19. Tabak, Benjamin M. & Miranda, Rogério Boueri & Fazio, Dimas M., 2013. "A geographically weighted approach to measuring efficiency in panel data: The case of US saving banks," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3747-3756.
    20. Daniel Melser, 2023. "Selection Bias in Housing Price Indexes: The Characteristics Repeat Sales Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 623-637, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • J08 - Labor and Demographic Economics - - General - - - Labor Economics Policies
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:timjeb:v:15:y:2022:i:1:p:111-126:n:1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.