IDEAS home Printed from https://ideas.repec.org/a/vrs/logitl/v15y2024i1p12n1001.html
   My bibliography  Save this article

The Multi-Year Period Analysis of the Air Freight Industry Pre-and Post-COVID-19

Author

Listed:
  • Inan Tuzun Tolga

    (Bahcesehir University, Department of Pilotage, 34353, Besiktas, Istanbul, Turkey)

Abstract

The paper aims to analyze air metric tons, gross logistics revenues, and cargo tonne kilometers (CTK) to benchmark pre-COVID (2014-2019) and post-COVID (2020-2022) periods using statistical methods, including mean values, standard deviation, variance, covariance, correlation, and T-tests. The findings reveal substantial decreases in all three variables in the post-COVID period, highlighting the significant impact of the pandemic on the air-freight industry. Specifically, the mean air metric tons decreased from 3,276,888 pre-COVID to 1,021,272 post-COVID; gross logistics revenues dropped from $6,155.37 million to $2,114.91 million, and CTK declined from 7,984.25 to 2,687.36. The reduced standard deviation and variance indicate less variability in the post-COVID period. Additionally, strong positive correlations between pre-COVID and post-COVID variables indicate consistent trends across the two periods. The paper’s originality lies in its findings which emphasize the need for the air freight industry to adapt and develop strategies mitigating the effects of future disruptions, underscoring the pandemic's profound impact on air freight operations and financial performance.

Suggested Citation

  • Inan Tuzun Tolga, 2024. "The Multi-Year Period Analysis of the Air Freight Industry Pre-and Post-COVID-19," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 1-12.
  • Handle: RePEc:vrs:logitl:v:15:y:2024:i:1:p:12:n:1001
    DOI: 10.2478/logi-2024-0017
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/logi-2024-0017
    Download Restriction: no

    File URL: https://libkey.io/10.2478/logi-2024-0017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Can Ding & Li Liu & Yi Zheng & Jianxiu Liao & Wenxing Huang, 2022. "Role of Distribution Centers Disruptions in New Retail Supply Chain: An Analysis Experiment," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    2. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    3. Agnieszka Dudziak & Monika Stoma & Emilia Osmólska, 2023. "Analysis of Consumer Behaviour in the Context of the Place of Purchasing Food Products with Particular Emphasis on Local Products," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
    4. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bounadi Nassima & Boussalia Serial Rayene & Bellaouar Ahmed, 2024. "Optimizing a Distribution Network for Agri-food Products in Algeria Using AnyLogistix Software," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 1-12.
    2. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    3. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    4. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    5. Giulio Marcucci & Filippo Emanuele Ciarapica & Giovanni Mazzuto & Maurizio Bevilacqua, 2024. "Analysis of ripple effect and its impact on supply chain resilience: a general framework and a case study on agri-food supply chain during the COVID-19 pandemic," Operations Management Research, Springer, vol. 17(1), pages 175-200, March.
    6. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    7. Bartosz Sawik, 2024. "Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping," Logistics, MDPI, vol. 8(2), pages 1-29, May.
    8. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    9. Guerrero, W.J. & Prodhon, C. & Velasco, N. & Amaya, C.A., 2013. "Hybrid heuristic for the inventory location-routing problem with deterministic demand," International Journal of Production Economics, Elsevier, vol. 146(1), pages 359-370.
    10. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    11. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    12. Sophie Masson & Romain Petiot, 2012. "Territorial Attractiveness, Logistical Facilities And Sustainable Development [Attractivité territoriale, infrastructures logistiques et développement durable]," Post-Print hal-04153018, HAL.
    13. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    14. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    15. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    16. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    17. Víctor Hugo de la Cruz Madrigal & Liliana Avelar Sosa & Jose-Manuel Mejía-Muñoz & Jorge Luis García Alcaraz & Emilio Jiménez Macías, 2025. "Dynamical System Modeling for Disruption in Supply Chain and Its Detection Using a Data-Driven Deep Learning-Based Architecture," Logistics, MDPI, vol. 9(2), pages 1-23, April.
    18. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    19. Mallidis, I. & Vlachos, D. & Dekker, R., 2010. "Greening Supply Chains: Impact on Cost and Design," Econometric Institute Research Papers EI 2010-39a, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Correia, Isabel & Melo, Teresa & Saldanha-da-Gama, Francisco, 2012. "Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions," Technical Reports on Logistics of the Saarland Business School 1, Saarland University of Applied Sciences (htw saar), Saarland Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:logitl:v:15:y:2024:i:1:p:12:n:1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.