IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v8y2020i1p132-156n8.html
   My bibliography  Save this article

Bivariate box plots based on quantile regression curves

Author

Listed:
  • Navarro Jorge

    (Facultad de Matemáticas, Universidad de Murcia, 30100Murcia, Spain)

Abstract

In this paper, we propose a procedure to build bivariate box plots (BBP). We first obtain the theoretical BBP for a random vector (X, Y). They are based on the univariate box plot of X and the conditional quantile curves of Y|X. They can be computed from the copula of (X, Y) and the marginal distributions. The main advantage of these BBP is that the coverage probabilities of the regions are distribution-free. So they can be selected by the users with the desired probabilities and they can be used to perform fit tests. Three reasonable options are proposed. They are illustrated with two examples from a normal model and an exponential model with a Clayton copula. Moreover, several methods to estimate the theoretical BBP are discussed. The main ones are based on linear and non-linear quantile regression. The others are based on empirical estimators and parametric and non-parametric (kernel) copula estimations. All of them can be used to get empirical BBP. Some extensions for the multivariate case are proposed as well.

Suggested Citation

  • Navarro Jorge, 2020. "Bivariate box plots based on quantile regression curves," Dependence Modeling, De Gruyter, vol. 8(1), pages 132-156, January.
  • Handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:132-156:n:8
    DOI: 10.1515/demo-2020-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2020-0008
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2020-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    3. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navarro Jorge, 2020. "Bivariate box plots based on quantile regression curves," Dependence Modeling, De Gruyter, vol. 8(1), pages 132-156, January.
    2. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    3. Dong Jin Lee, 2009. "Testing Parameter Stability in Quantile Models: An Application to the U.S. Inflation Process," Working papers 2009-26, University of Connecticut, Department of Economics.
    4. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    5. Wilke, Ralf A. & Fitzenberger, Bernd & Zhang, Xuan, 2004. "A Note on Implementing Box-Cox Quantile Regression," ZEW Discussion Papers 04-61, ZEW - Leibniz Centre for European Economic Research.
    6. Simila, Timo, 2006. "Self-organizing map visualizing conditional quantile functions with multidimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2097-2110, April.
    7. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    8. Nicholas C.S. Sim, 2009. "Modeling Quantile Dependence: A New Look at the Money-Output Relationship," School of Economics and Public Policy Working Papers 2009-34, University of Adelaide, School of Economics and Public Policy.
    9. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    10. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    11. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    12. Oberhofer, Walter & Haupt, Harry, 2005. "Consistency of nonlinear regression quantiles under Type I censoring weak dependence and general covariate design," University of Regensburg Working Papers in Business, Economics and Management Information Systems 406, University of Regensburg, Department of Economics.
    13. repec:hal:journl:peer-00732534 is not listed on IDEAS
    14. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
    15. Tepegjozova Marija & Zhou Jing & Claeskens Gerda & Czado Claudia, 2022. "Nonparametric C- and D-vine-based quantile regression," Dependence Modeling, De Gruyter, vol. 10(1), pages 1-21, January.
    16. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    17. Sifat, Imtiaz & Ghafoor, Abdul & Ah Mand, Abdollah, 2021. "The COVID-19 pandemic and speculation in energy, precious metals, and agricultural futures," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    18. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    19. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    20. M. -Y. Chen & F. -L. Lin & C. -K. Chang, 2009. "Relations between health care expenditure and income: an application of local quantile regressions," Applied Economics Letters, Taylor & Francis Journals, vol. 16(2), pages 177-181.
    21. Bernd Fitzenberger & Ralf A. Wilke & Xuan Zhang, 2010. "Implementing Box-Cox Quantile Regression," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 158-181, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:132-156:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.