IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Tools for analyzing multiple imputed datasets

Listed author(s):
  • John B. Carlin

    (Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics)

  • Ning Li

    (Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics)

  • Philip Greenwood

    (Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics)

  • Carolyn Coffey

    (Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics)

Registered author(s):

The method of multiple imputation (MI) is used increasingly for analyzing datasets with missing observations. Two sets of tasks are required in order to implement the method: (a) generating multiple complete datasets in which missing values have been imputed by simulating from an appropriate probability distribution and (b) analyzing the multiple imputed datasets and combining complete data inferences from them to form an overall inference for parameters of interest. An increasing number of software tools are available for task (a), although this is difficult to automate, because the method of imputation should depend on the context and available covariate data. When the quantity of missing data is not great, the sensitivity of results to the imputation model may be relatively low. In this context, software tools that enable task (b) to be performed with similar ease to the analysis of a single dataset should facilitate the wider use of multiple imputation. Such tools need not only to implement techniques for inference from multiple imputed datasets but also to allow standard manipulations such as transformation and recoding of variables. In this article, we describe a set of Stata commands that we have developed for manipulating and analyzing multiple datasets. Copyright 2003 by StataCorp LP.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Article provided by StataCorp LP in its journal Stata Journal.

Volume (Year): 3 (2003)
Issue (Month): 3 (September)
Pages: 226-244

in new window

Handle: RePEc:tsj:stataj:v:3:y:2003:i:3:p:226-244
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:3:y:2003:i:3:p:226-244. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

or (Lisa Gilmore)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.