IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v17y2017i4p901-915.html
   My bibliography  Save this article

Automatic portmanteau tests with applications to market risk management

Author

Listed:
  • Guangwei Zhu

    (Southwestern University of Finance and Economics)

  • Zaichao Du

    (Southwestern University of Finance and Economics)

  • Juan Carlos Escanciano

    (Indiana University)

Abstract

In this article, we review some recent advances in testing for serial correlation, provide code for implementation, and illustrate this code’s application to market risk forecast evaluation. We focus on the classic and widely used portman- teau tests and their data-driven versions. These tests are simple to implement for two reasons: First, the researcher does not need to specify the order of the tested autocorrelations, because the test automatically chooses this number. Second, its asymptotic null distribution is chi-squared with one degree of freedom, so there is no need to use a bootstrap procedure to estimate the critical values. We illustrate the wide applicability of this methodology with applications to forecast evaluation for market risk measures such as value-at-risk and expected shortfall. Copyright 2017 by StataCorp LP.

Suggested Citation

  • Guangwei Zhu & Zaichao Du & Juan Carlos Escanciano, 2017. "Automatic portmanteau tests with applications to market risk management," Stata Journal, StataCorp LP, vol. 17(4), pages 901-915, December.
  • Handle: RePEc:tsj:stataj:v:17:y:2017:i:4:p:901-915
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj17-4/st0504/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0504
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    2. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    3. Delgado, Miguel A. & Velasco, Carlos, 2011. "An Asymptotically Pivotal Transform of the Residuals Sample Autocorrelations With Application to Model Checking," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 946-958.
    4. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    5. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlotta Penone & Elisa Giampietri & Samuele Trestini, 2022. "Futures–spot price transmission in EU corn markets," Agribusiness, John Wiley & Sons, Ltd., vol. 38(3), pages 679-709, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2024. "ARMA model checking with data-driven portmanteau tests," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 925-942, July.
    2. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
    3. Pedro H. C. Sant’Anna, 2017. "Testing for Uncorrelated Residuals in Dynamic Count Models With an Application to Corporate Bankruptcy," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 349-358, July.
    4. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    5. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    6. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.
    7. Joseph P. Romano & Marius A. Tirlea, 2022. "Permutation testing for dependence in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 781-807, September.
    8. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
    9. Palumbo, D., 2021. "Testing and Modelling Time Series with Time Varying Tails," Cambridge Working Papers in Economics 2111, Faculty of Economics, University of Cambridge.
    10. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    11. Du, Zaichao & Escanciano, Juan Carlos & Zhu, Guangwei, 2023. "The case for CASE: Estimating heterogeneous systemic effects," Journal of Banking & Finance, Elsevier, vol. 157(C).
    12. Argyropoulos, Christos & Panopoulou, Ekaterini, 2019. "Backtesting VaR and ES under the magnifying glass," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 22-37.
    13. León, Ángel & Ñíguez, Trino-Manuel, 2020. "Modeling asset returns under time-varying semi-nonparametric distributions," Journal of Banking & Finance, Elsevier, vol. 118(C).
    14. Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    16. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    17. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    18. Thiele, Stephen, 2019. "Detecting underestimates of risk in VaR models," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 12-20.
    19. Alfredo García-Hiernaux, 2009. "Diagnostic checking using subspace methods," Documentos de Trabajo del ICAE 2009-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    20. Adrian Wai‐Kong Cheung & Jen‐Je Su & Astrophel Kim Choo, 2012. "Are exchange rates serially correlated? New evidence from the Euro FX markets," Review of Financial Economics, John Wiley & Sons, vol. 21(1), pages 14-20, January.

    More about this item

    Keywords

    dbptest; rtau; autocorrelation; consistency; power; Akaike’s information criterion; Schwarz’s Bayesian information criterion; market risk;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:17:y:2017:i:4:p:901-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.