IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v45y2013i7p796-810.html
   My bibliography  Save this article

Simulation optimization for the stochastic economic lot scheduling problem

Author

Listed:
  • Nils Löhndorf
  • Stefan Minner

Abstract

This article studies simulation optimization methods for the stochastic economic lot scheduling problem. In contrast with prior research, the focus of this work is on methods that treat this problem as a black box. Based on a large-scale numerical study, approximate dynamic programming is compared with a global search for parameters of simple control policies. Two value function approximation schemes are proposed that are based on linear combinations of piecewise-constant functions as well as control policies that can be described by a small set of parameters. While approximate value iteration worked well for small problems with three products, it was clearly outperformed by the global policy search as soon as problem size increased. The most reliable choice in this study was a globally optimized fixed-cycle policy. An additional analysis of the response surface of model parameters on optimal average cost revealed that the cost effect of product diversity was negligible.

Suggested Citation

  • Nils Löhndorf & Stefan Minner, 2013. "Simulation optimization for the stochastic economic lot scheduling problem," IISE Transactions, Taylor & Francis Journals, vol. 45(7), pages 796-810.
  • Handle: RePEc:taf:uiiexx:v:45:y:2013:i:7:p:796-810
    DOI: 10.1080/0740817X.2012.662310
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2012.662310
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2012.662310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamiti Kenza & Ourbih-Tari Megdouda & Aloui Abdelouhab & Idjis Khelidja, 2018. "The use of variance reduction, relative error and bias in testing the performance of M/G/1 retrial queues estimators in Monte Carlo simulation," Monte Carlo Methods and Applications, De Gruyter, vol. 24(3), pages 165-178, September.
    2. Hossein Jahandideh & Kumar Rajaram & Kevin McCardle, 2020. "Production Campaign Planning Under Learning and Decay," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 615-632, May.
    3. Briskorn, Dirk & Zeise, Philipp & Packowski, Josef, 2016. "Quasi-fixed cyclic production schemes for multiple products with stochastic demand," European Journal of Operational Research, Elsevier, vol. 252(1), pages 156-169.
    4. Löhndorf, Nils & Riel, Manuel & Minner, Stefan, 2014. "Simulation optimization for the stochastic economic lot scheduling problem with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 157(C), pages 170-176.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:45:y:2013:i:7:p:796-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.