IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i12p2165-2182.html
   My bibliography  Save this article

Markovian queue optimisation analysis with an unreliable server subject to working breakdowns and impatient customers

Author

Listed:
  • Cheng-Dar Liou

Abstract

This study investigates an infinite capacity Markovian queue with a single unreliable service station, in which the customers may balk (do not enter) and renege (leave the queue after entering). The unreliable service station can be working breakdowns even if no customers are in the system. The matrix-analytic method is used to compute the steady-state probabilities for the number of customers, rate matrix and stability condition in the system. The single-objective model for cost and bi-objective model for cost and expected waiting time are derived in the system to fit in with practical applications. The particle swarm optimisation algorithm is implemented to find the optimal combinations of parameters in the pursuit of minimum cost. Two different approaches are used to identify the Pareto optimal set and compared: the epsilon-constraint method and non-dominate sorting genetic algorithm. Compared results allow using the traditional optimisation approach epsilon-constraint method, which is computationally faster and permits a direct sensitivity analysis of the solution under constraint or parameter perturbation. The Pareto front and non-dominated solutions set are obtained and illustrated. The decision makers can use these to improve their decision-making quality.

Suggested Citation

  • Cheng-Dar Liou, 2015. "Markovian queue optimisation analysis with an unreliable server subject to working breakdowns and impatient customers," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2165-2182, September.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:12:p:2165-2182
    DOI: 10.1080/00207721.2013.859326
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.859326
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.859326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Ancker & A. V. Gafarian, 1963. "Some Queuing Problems with Balking and Reneging. I," Operations Research, INFORMS, vol. 11(1), pages 88-100, February.
    2. Y.C. Chang & W.L. Pearn, 2011. "Optimal management for infinite capacity -policy M/G/1 queue with a removable service station," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1075-1083.
    3. C. J. Ancker & A. V. Gafarian, 1963. "Some Queuing Problems with Balking and Reneging---II," Operations Research, INFORMS, vol. 11(6), pages 928-937, December.
    4. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    5. Kuo-Hsiung Wang & Ying-Chung Chang, 2002. "Cost analysis of a finite M/M/R queueing system with balking, reneging, and server breakdowns," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(2), pages 169-180, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mridula Jain & Anamika Jain, 2022. "Genetic algorithm in retrial queueing system with server breakdown and caller intolerance with voluntary service," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 582-598, April.
    2. Lan Shaojun & Tang Yinghui, 2017. "Performance Analysis of a Discrete-Time Queue with Working Breakdowns and Searching for the Optimum Service Rate in Working Breakdown Period," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 176-192, April.
    3. Miaomiao Yu & Yinghui Tang, 2022. "Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method," Operational Research, Springer, vol. 22(3), pages 2831-2858, July.
    4. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amina Angelika Bouchentouf & Aicha Messabihi, 2018. "Heterogeneous two-server queueing system with reverse balking and reneging," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 251-267, June.
    2. Mohammad Firouz & Linda Li & Burcu B. Keskin, 2022. "Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 3963-3981, November.
    3. Pala, Ali & Zhuang, Jun, 2018. "Security screening queues with impatient applicants: A new model with a case study," European Journal of Operational Research, Elsevier, vol. 265(3), pages 919-930.
    4. Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
    5. Navid Ghaffarzadegan & Richard C. Larson, 2018. "SD meets OR: a new synergy to address policy problems," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 327-353, January.
    6. P. Vijaya Laxmi & V. Goswami & K. Jyothsna, 2013. "Optimization of Balking and Reneging Queue with Vacation Interruption under -Policy," Journal of Optimization, Hindawi, vol. 2013, pages 1-9, June.
    7. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    8. Uchida, Kenetsu, 2012. "A model evaluating effect of disaster warning issuance conditions on “cry wolf syndrome” in the case of a landslide," European Journal of Operational Research, Elsevier, vol. 218(2), pages 530-537.
    9. Tkachenko Andrey, 2013. "Multichannel queuing systems with balking and regenerative input fl ow," HSE Working papers WP BRP 14/STI/2013, National Research University Higher School of Economics.
    10. Sandeep Kumar Sood & Keshav Singh Rawat, 2021. "A scientometric analysis of ICT-assisted disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2863-2881, April.
    11. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    12. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    13. Luka Matijević & Marko Đurasević & Domagoj Jakobović, 2023. "A Variable Neighborhood Search Method with a Tabu List and Local Search for Optimizing Routing in Trucks in Maritime Ports," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    14. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    15. Katsunobu Sasanuma, 2021. "Asymptotic Analysis for Systems with Deferred Abandonment," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    16. Li Xiao & Susan H. Xu & David D. Yao & Hanqin Zhang, 2022. "Optimal staffing for ticket queues," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 309-351, October.
    17. Xiaoqing Dai & Han Qiu & Lijun Sun, 2021. "A Data-Efficient Approach for Evacuation Demand Generation and Dissipation Prediction in Urban Rail Transit System," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    18. Mojahid Saeed Osman & Bala Ram, 2017. "Distributed scheduling approach for dynamic evacuation networks," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 23(6), pages 554-569, November.
    19. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    20. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:12:p:2165-2182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.