IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v41y2021i6p855-879.html
   My bibliography  Save this article

Applications of machine learning methods in traffic crash severity modelling: current status and future directions

Author

Listed:
  • Xiao Wen
  • Yuanchang Xie
  • Liming Jiang
  • Ziyuan Pu
  • Tingjian Ge

Abstract

As a key area of traffic safety research, crash severity modelling has attracted tremendous attention. Recently, there has been growing interest in applying machine learning (ML) methods in this area. However, the lessons and experience learned so far have not been systematically documented and summarised. This is the first article that surveys studies on ML applications in crash severity modelling and has the following major contributions: (1) it provides a comprehensive and critical review of current research efforts; (2) it summarises the successful experience and main challenges (e.g. data and methodology); and (3) it identifies promising research opportunities towards accurate and reliable crash severity modelling and results interpretation. The review results suggest that imbalanced data remains a major issue. Under- and over-samplings are often used to balance crash severity data despite their limitations. Some studies use local sensitivity analysis (LSA) to interpret ML modelling results but ignore the strict assumptions of LSA and omit the joint effects of risk factors. Moreover, very few studies consider the accuracy and reliability of ML model evaluation metrics. Other issues include spatiotemporal correlations, causality, model transferability and heterogeneity. This paper concludes by providing suggestions on model selection and modification to address the identified issues and recommendations for future research. For example, employing advanced ML methods such as graph convolutional networks (GCN) to model spatiotemporal correlations; exploring innovative ways of applying ML methods; and leveraging new developments in ML (e.g. interpretable ML) to derive causal relationships and interpret modelling results.

Suggested Citation

  • Xiao Wen & Yuanchang Xie & Liming Jiang & Ziyuan Pu & Tingjian Ge, 2021. "Applications of machine learning methods in traffic crash severity modelling: current status and future directions," Transport Reviews, Taylor & Francis Journals, vol. 41(6), pages 855-879, November.
  • Handle: RePEc:taf:transr:v:41:y:2021:i:6:p:855-879
    DOI: 10.1080/01441647.2021.1954108
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2021.1954108
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2021.1954108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Afaq Khattak & Hamad Almujibah & Ahmed Elamary & Caroline Mongina Matara, 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5," Sustainability, MDPI, vol. 14(19), pages 1-18, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:41:y:2021:i:6:p:855-879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.