IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i14p4035-4052.html
   My bibliography  Save this article

Data mining-based algorithm for storage location assignment in a randomised warehouse

Author

Listed:
  • King-Wah Pang
  • Hau-Ling Chan

Abstract

Data mining has long been applied in information extraction for a wide range of applications such as customer relationship management in marketing. In the retailing industry, this technique is used to extract the consumers buying behaviour when customers frequently purchase similar products together; in warehousing, it is also beneficial to store these correlated products nearby so as to reduce the order picking operating time and cost. In this paper, we present a data mining-based algorithm for storage location assignment of piece picking items in a randomised picker-to-parts warehouse by extracting and analysing the association relationships between different products in customer orders. The algorithm aims at minimising the total travel distances for both put-away and order picking operations. Extensive computational experiments based on synthetic data that simulates the operations of a computer and networking products spare parts warehouse in Hong Kong have been conducted to test the effectiveness and applicability of the proposed algorithm. Results show that our proposed algorithm is more efficient than the closest open location and purely dedicated storage allocation systems in minimising the total travel distances. The proposed storage allocation algorithm is further evaluated with experiments simulating larger scale warehouse operations. Similar results on the performance comparison among the three storage approaches are observed. It supports the proposed storage allocation algorithm and is applicable to improve the warehousing operation efficiency if items have strong association among each other.

Suggested Citation

  • King-Wah Pang & Hau-Ling Chan, 2017. "Data mining-based algorithm for storage location assignment in a randomised warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4035-4052, July.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:14:p:4035-4052
    DOI: 10.1080/00207543.2016.1244615
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1244615
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1244615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Shan & Hu, Xiangpei & Huang, Kai & Yuan, Yufei, 2021. "Optimization of product category allocation in multiple warehouses to minimize splitting of online supermarket customer orders," European Journal of Operational Research, Elsevier, vol. 290(2), pages 556-571.
    2. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    4. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    5. Aloini, Davide & Benevento, Elisabetta & Dulmin, Riccardo & Guerrazzi, Emanuele & Mininno, Valeria, 2025. "Unlocking Real-Time Decision-Making in Warehouses: A machine learning-based forecasting and alerting system for cycle time prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    6. Lanza, Giacomo & Passacantando, Mauro & ScutellĂ , Maria Grazia, 2022. "Assigning and sequencing storage locations under a two level storage policy: Optimization model and matheuristic approaches," Omega, Elsevier, vol. 108(C).
    7. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    8. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    9. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    10. Zhang, Jingran & Onal, Sevilay & Das, Sanchoy, 2020. "The dynamic stocking location problem – Dispersing inventory in fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 224(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:14:p:4035-4052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.