IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2015i14p4205-4212.html
   My bibliography  Save this article

An approximation algorithm for a special case of the asymmetric travelling salesman problem

Author

Listed:
  • Maksim Barketau
  • Erwin Pesch

Abstract

We consider the following optimisation problem that we encountered during the consolidation process of trains in a container transhipment terminal as well as in the intermediate storage of containers in sea ports in order to accelerate the loading and unloading of the vessels. There are n ordered pairs of points in the m -dimensional metric space: . The problem is to find a permutation of numbers minimising the function where is the metric of the space. The problem can be considered as a special case of the asymmetric travelling salesman problem. As for Euclidean, Manhattan and Chebyshev metric the problem is NP-hard (as a generalisation of the well-known TSP problem) we propose the simple approximation algorithm with the approximation guarantee equal to 3. The approximation guarantee is tight as will be shown by a sequence of instances for which the approximation ratio converges to 3.

Suggested Citation

  • Maksim Barketau & Erwin Pesch, 2016. "An approximation algorithm for a special case of the asymmetric travelling salesman problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4205-4212, July.
  • Handle: RePEc:taf:tprsxx:v:54:y:2015:i:14:p:4205-4212
    DOI: 10.1080/00207543.2015.1113327
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1113327
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1113327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. M. Dearing & R. L. Francis, 1974. "A Minimax Location Problem on a Network," Transportation Science, INFORMS, vol. 8(4), pages 333-343, November.
    2. P. M. Dearing & R. L. Francis, 1974. "A Network Flow Solution to a Multifacility Minimax Location Problem Involving Rectilinear Distances," Transportation Science, INFORMS, vol. 8(2), pages 126-141, May.
    3. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    4. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    2. Yan, Baicheng & Jin, Jian Gang & Zhu, Xiaoning & Lee, Der-Horng & Wang, Li & Wang, Hua, 2020. "Integrated planning of train schedule template and container transshipment operation in seaport railway terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Schulz, Arne & Fliedner, Malte & Fiedrich, Benedikt & Pfeiffer, Christian, 2021. "Levelling crane workload in multi-yard rail-road container terminals," European Journal of Operational Research, Elsevier, vol. 293(3), pages 941-954.
    4. Stefan Fedtke & Nils Boysen, 2017. "Gantry crane and shuttle car scheduling in modern rail–rail transshipment yards," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 473-503, March.
    5. Nikolai Krivulin, 2017. "Using tropical optimization to solve constrained minimax single-facility location problems with rectilinear distance," Computational Management Science, Springer, vol. 14(4), pages 493-518, October.
    6. Guo, Peng & Weidinger, Felix & Boysen, Nils, 2019. "Parallel machine scheduling with job synchronization to enable efficient material flows in hub terminals," Omega, Elsevier, vol. 89(C), pages 110-121.
    7. Maksim Barketau & Erwin Pesch & Yakov Shafransky, 2016. "Scheduling dedicated jobs with variative processing times," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 774-785, February.
    8. Alena Otto & Xiyu Li & Erwin Pesch, 2017. "Two-Way Bounded Dynamic Programming Approach for Operations Planning in Transshipment Yards," Transportation Science, INFORMS, vol. 51(1), pages 325-342, February.
    9. Albareda-Sambola, Maria & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2019. "Reformulated acyclic partitioning for rail-rail containers transshipment," European Journal of Operational Research, Elsevier, vol. 277(1), pages 153-165.
    10. Konrad Stephan & Nils Boysen, 2017. "Crane scheduling in railway yards: an analysis of computational complexity," Journal of Scheduling, Springer, vol. 20(5), pages 507-526, October.
    11. Rupp, Johannes & Boysen, Nils & Briskorn, Dirk, 2022. "Optimizing consolidation processes in hubs: The hub-arrival-departure problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1051-1066.
    12. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    13. Shujuan Guo & Cuijie Diao & Gang Li & Katsuhiko Takahashi, 2021. "The Two-Echelon Dual-Channel Models for the Intermodal Container Terminals of the China Railway Express Considering Container Accumulation Modes," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    14. Boysen, Nils & Emde, Simon, 2016. "The parallel stack loading problem to minimize blockages," European Journal of Operational Research, Elsevier, vol. 249(2), pages 618-627.
    15. Oleg Duginov, 0. "Bottleneck subset-type restricted matching problems," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-10.
    16. Ruiyou Zhang & Shixin Liu & Herbert Kopfer, 2016. "Tree search procedures for the blocks relocation problem with batch moves," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 397-424, September.
    17. Mantovani, Serena & Morganti, Gianluca & Umang, Nitish & Crainic, Teodor Gabriel & Frejinger, Emma & Larsen, Eric, 2018. "The load planning problem for double-stack intermodal trains," European Journal of Operational Research, Elsevier, vol. 267(1), pages 107-119.
    18. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    19. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    20. Wenqian Liu & Xiaoning Zhu & Li Wang, 2019. "Distribution Organization Optimization for Inbound China Railway Express at Alataw Pass Railway Station," Sustainability, MDPI, vol. 11(24), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2015:i:14:p:4205-4212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.