IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v6y2006i2p147-158.html
   My bibliography  Save this article

A new technique for calibrating stochastic volatility models: the Malliavin gradient method

Author

Listed:
  • Christian-Oliver Ewald
  • Aihua Zhang

Abstract

We discuss the application of gradient methods to calibrate mean reverting stochastic volatility models. For this we use formulas based on Girsanov transformations as well as a modification of the Bismut-Elworthy formula to compute the derivatives of certain option prices with respect to the parameters of the model by applying Monte Carlo methods. The article presents an extension of the ideas to apply Malliavin calculus methods in the computation of Greek's.

Suggested Citation

  • Christian-Oliver Ewald & Aihua Zhang, 2006. "A new technique for calibrating stochastic volatility models: the Malliavin gradient method," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 147-158.
  • Handle: RePEc:taf:quantf:v:6:y:2006:i:2:p:147-158
    DOI: 10.1080/14697680500531676
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500531676
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    2. Jorge A. León & Reyla Navarro & David Nualart, 2003. "An Anticipating Calculus Approach to the Utility Maximization of an Insider," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 171-185, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilgi Yilmaz, 2018. "Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus," Papers 1806.06061, arXiv.org.
    2. Yang, Zhaojun & Ewald, Christian-Oliver, 2010. "On the non-equilibrium density of geometric mean reversion," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 608-611, April.
    3. Christian-Oliver Ewald & Zhaojun Yang, 2008. "Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 97-123, August.
    4. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    5. repec:spr:compst:v:68:y:2008:i:1:p:97-123 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:2:p:147-158. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.