IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v6y2006i2p147-158.html
   My bibliography  Save this article

A new technique for calibrating stochastic volatility models: the Malliavin gradient method

Author

Listed:
  • Christian-Oliver Ewald
  • Aihua Zhang

Abstract

We discuss the application of gradient methods to calibrate mean reverting stochastic volatility models. For this we use formulas based on Girsanov transformations as well as a modification of the Bismut-Elworthy formula to compute the derivatives of certain option prices with respect to the parameters of the model by applying Monte Carlo methods. The article presents an extension of the ideas to apply Malliavin calculus methods in the computation of Greek's.

Suggested Citation

  • Christian-Oliver Ewald & Aihua Zhang, 2006. "A new technique for calibrating stochastic volatility models: the Malliavin gradient method," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 147-158.
  • Handle: RePEc:taf:quantf:v:6:y:2006:i:2:p:147-158
    DOI: 10.1080/14697680500531676
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500531676
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500531676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabio Bellini & Marco Frittelli, 2002. "On the Existence of Minimax Martingale Measures," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 1-21, January.
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    3. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    4. Jorge A. León & Reyla Navarro & David Nualart, 2003. "An Anticipating Calculus Approach to the Utility Maximization of an Insider," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 171-185, January.
    5. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewald, Christian-Oliver, 2008. "A note on the Malliavin derivative operator under change of variable," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 173-178, February.
    2. Bilgi Yilmaz, 2018. "Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus," Papers 1806.06061, arXiv.org.
    3. Yang, Zhaojun & Ewald, Christian-Oliver, 2010. "On the non-equilibrium density of geometric mean reversion," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 608-611, April.
    4. Christian-Oliver Ewald & Zhaojun Yang, 2008. "Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 97-123, August.
    5. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    2. Tsukasa Fujiwara, 2004. "From the Minimal Entropy Martingale Measures to the Optimal Strategies for the Exponential Utility Maximization: the Case of Geometric Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(4), pages 367-391, December.
    3. Siddiqi, Hammad, 2013. "Analogy Making in Complete and incomplete Markets: A New Model for Pricing Contingent Claims," Risk and Sustainable Management Group Working Papers 160608, University of Queensland, School of Economics.
    4. Grzegorz Hara'nczyk & Wojciech S{l}omczy'nski & Tomasz Zastawniak, 2007. "Relative and Discrete Utility Maximising Entropy," Papers 0709.1281, arXiv.org.
    5. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    6. Zhaojun Yang & Christian-Oliver Ewald & Olaf Menkens, 2011. "Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 93-120, August.
    7. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    8. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    9. Keita Owari, 2011. "On Admissible Strategies in Robust Utility Maximization," Papers 1109.5512, arXiv.org, revised Mar 2012.
    10. Gundel, Anne & Weber, Stefan, 2008. "Utility maximization under a shortfall risk constraint," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1126-1151, December.
    11. Siddiqi, Hammad, 2014. "Analogy Making and the Puzzles of Index Option Returns and Implied Volatility Skew: Theory and Empirical Evidence," Risk and Sustainable Management Group Working Papers 177302, University of Queensland, School of Economics.
    12. Siddiqi, Hammad, 2013. "Mental Accounting: A Closed-Form Alternative to the Black Scholes Model," MPRA Paper 50759, University Library of Munich, Germany.
    13. Lucia Caramellino & Giorgio Ferrari & Roberta Piersimoni, 2011. "Power Series Representations for European Option Prices under Stochastic Volatility Models," Papers 1105.0068, arXiv.org, revised Jun 2011.
    14. Siddiqi, Hammad, 2013. "Analogy Making In Complete and Incomplete Markets: A New Model for Pricing Contingent Claims," Risk and Sustainable Management Group Working Papers 156934, University of Queensland, School of Economics.
    15. Keita Owari, 2011. "ON ADMISSIBLE STRATEGIES IN ROBUST UTILITY MAXIMIZATION(Revised in March 2012, Forthcoming in "Mathematics and Financial Economics")," CARF F-Series CARF-F-257, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    16. Klöppel Susanne & Schweizer Martin, 2007. "Dynamic utility-based good deal bounds," Statistics & Risk Modeling, De Gruyter, vol. 25(4/2007), pages 1-25, October.
    17. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Siddiqi, Hammad, 2014. "Analogy Making and the Structure of Implied Volatility Skew," MPRA Paper 60921, University Library of Munich, Germany.
    19. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    20. Guo, Ivan & Zhu, Song-Ping, 2017. "Equal risk pricing under convex trading constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 136-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:2:p:147-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.