IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v44y2008i11p1126-1151.html
   My bibliography  Save this article

Utility maximization under a shortfall risk constraint

Author

Listed:
  • Gundel, Anne
  • Weber, Stefan

Abstract

The article analyzes optimal portfolio choice of utility maximizing agents in a general continuous-time financial market model under a joint budget and downside risk constraint. The risk constraint is given in terms of a class of convex risk measures. We do not impose any specific assumptions on the price processes of the underlying assets. We analyze under which circumstances the risk constraint is binding. We provide a closed-form solution to the optimization problem in a general semimartingale framework. For a complete market, the wealth maximization problem is equivalent to a dynamic portfolio optimization problem.

Suggested Citation

  • Gundel, Anne & Weber, Stefan, 2008. "Utility maximization under a shortfall risk constraint," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1126-1151, December.
  • Handle: RePEc:eee:mateco:v:44:y:2008:i:11:p:1126-1151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(08)00008-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bank, Peter & Riedel, Frank, 2000. "Non-time additive utility optimization--the case of certainty," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 271-290, April.
    2. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short-Sale Constraints: the Finite-Dimensional Case," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10.
    5. Gundel, Anne & Weber, Stefan, 2007. "Robust utility maximization with limited downside risk in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1663-1688, November.
    6. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    7. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    8. Schied Alexander & Wu Ching-Tang, 2005. "Duality theory for optimal investments under model uncertainty," Statistics & Risk Modeling, De Gruyter, vol. 23(3/2005), pages 199-217, March.
    9. Alexander Schied & Ching-Tang Wu, 2005. "Duality theory for optimal investments under model uncertainty," SFB 649 Discussion Papers SFB649DP2005-025, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Sep 2005.
    10. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    11. Stefan Weber, 2006. "Distribution-Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441.
    12. Anne Gundel, 2005. "Robust utility maximization for complete and incomplete market models," Finance and Stochastics, Springer, vol. 9(2), pages 151-176, April.
    13. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Janke, 2016. "Utility Maximization and Indifference Value under Risk and Information Constraints for a Market with a Change Point," Papers 1610.08644, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:44:y:2008:i:11:p:1126-1151. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.