IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Applying free random variables to random matrix analysis of financial data. Part I: The Gaussian case

Listed author(s):
  • Zdzisław Burda
  • Andrzej Jarosz
  • Maciej Nowak
  • Jerzy Jurkiewicz
  • Gabor Papp
  • Ismail Zahed
Registered author(s):

    We apply the concept of free random variables to doubly correlated (Gaussian) Wishart random matrix models, appearing, for example, in a multivariate analysis of financial time series, and displaying both inter-asset cross-covariances and temporal auto-covariances. We give a comprehensive introduction to the rich financial reality behind such models. We explain in an elementary way the main techniques of free random variables calculus, with a view to promoting them in the quantitative finance community. We apply our findings to tackle several financially relevant problems, such as a universe of assets displaying exponentially decaying temporal covariances, or the exponentially weighted moving average, both with an arbitrary structure of cross-covariances.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

    Volume (Year): 11 (2011)
    Issue (Month): 7 ()
    Pages: 1103-1124

    in new window

    Handle: RePEc:taf:quantf:v:11:y:2011:i:7:p:1103-1124
    DOI: 10.1080/14697688.2010.484025
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:7:p:1103-1124. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.