IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i12p2270-2285.html
   My bibliography  Save this article

Multiple linear regression with compositional response and covariates

Author

Listed:
  • Jiajia Chen
  • Xiaoqin Zhang
  • Shengjia Li

Abstract

The standard regression model designed for real space is not suitable for compositional variables; it should be considered, whether the response and/or covariates are of compositional nature. There are usually three types of multiple regression model with compositional variables: Type 1 refers to the case where all the covariates are compositional data and the response is real; Type 2 is the opposite of Type 1; Type 3 relates to the model with compositional response and covariates. There have been some models for the three types. In this paper, we focus on Type 3 and propose multiple linear regression models including model in the simplex and model in isometric log-ratio (ilr) coordinates. The model in the simplex is based on matrix product, which can project a $ D_{1} $ D1-part composition to another $ D_{2} $ D2-part composition, and can deal with different number of parts of compositional variables. Some theorems are given to point out the relationship of parameters between the proposed models. Moreover, the inference for parameters in proposed models is also given. Real example is studied to verify the validity and usefulness of proposed models.

Suggested Citation

  • Jiajia Chen & Xiaoqin Zhang & Shengjia Li, 2017. "Multiple linear regression with compositional response and covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2270-2285, September.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2270-2285
    DOI: 10.1080/02664763.2016.1157145
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1157145
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1157145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Hron & P. Filzmoser & K. Thompson, 2012. "Linear regression with compositional explanatory variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1115-1128, November.
    2. J. L. Scealy & A. H. Welsh, 2011. "Regression for compositional data by using distributions defined on the hypersphere," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 351-375, June.
    3. Gueorguieva, Ralitza & Rosenheck, Robert & Zelterman, Daniel, 2008. "Dirichlet component regression and its applications to psychiatric data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5344-5355, August.
    4. Petra Kynčlová & Peter Filzmoser & Karel Hron, 2015. "Modeling Compositional Time Series with Vector Autoregressive Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 303-314, July.
    5. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    6. Billheimer D. & Guttorp P. & Fagan W.F., 2001. "Statistical Interpretation of Species Composition," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1205-1214, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dargel, Lukas & Thomas-Agnan, Christine, 2023. "Share-ratio interpretations of compositional regression models," TSE Working Papers 23-1456, Toulouse School of Economics (TSE), revised 20 Sep 2023.
    2. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
    3. T. H. A. Nguyen & T. Laurent & C. Thomas-Agnan & A. Ruiz-Gazen, 2022. "Analyzing the impacts of socio-economic factors on French departmental elections with CoDa methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(5), pages 1235-1251, April.
    4. Defever, F. & Riaño, A., 2022. "Firm-Destination Heterogeneity and the Distribution of Export Intensity," Working Papers 22/01, Department of Economics, City University London.
    5. Joanna Morais & Christine Thomas-Agnan & Michel Simioni, 2017. "Interpretation of explanatory variables impacts in compositional regression models," Working Papers hal-01563362, HAL.
    6. Lukas Dargel & Christine Thomas-Agnan, 2024. "The link between multiplicative competitive interaction models and compositional data regression with a total," Journal of Applied Statistics, Taylor & Francis Journals, vol. 51(14), pages 2929-2960, October.
    7. Monique Graf, 2020. "Regression for compositions based on a generalization of the Dirichlet distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 913-936, December.
    8. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
    9. Chunmei Zhang & Lingen Wang, 2023. "Evaluating the Health of Urban Human Settlements," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    10. Gao, Cheng & Wang, Dan & Sun, Yuying & Wang, Wei & Zhang, Xiuyu, 2023. "Optimal load dispatch of multi-source looped district cooling systems based on energy and hydraulic performances," Energy, Elsevier, vol. 274(C).
    11. Dargel, Lukas & Thomas-Agnan, Christine, 2024. "Pairwise share ratio interpretations of compositional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    12. Thomas-Agnan, Christine & Morais, Joanna, 2019. "Covariates impacts in compositional models and simplicial derivatives," TSE Working Papers 19-1057, Toulouse School of Economics (TSE).
    13. Thomas-Agnan, Christine & Laurent, Thibault & Ruiz-Gazen, Anne & Nguyen, T.H.A & Chakir, Raja & Lungarska, Anna, 2020. "Spatial simultaneous autoregressive models for compositional data: Application to land use," TSE Working Papers 20-1098, Toulouse School of Economics (TSE).
    14. Joanna Morais & Christine Thomas-Agnan, 2021. "Impact of covariates in compositional models and simplicial derivatives," Post-Print hal-03180682, HAL.
    15. Jasper Dijkstra & Tracy Durrant & Jesús San-Miguel-Ayanz & Sander Veraverbeke, 2022. "Anthropogenic and Lightning Fire Incidence and Burned Area in Europe," Land, MDPI, vol. 11(5), pages 1-19, April.
    16. Lisa-Marie Schröder & Vito Bobek & Tatjana Horvat, 2021. "Determinants of Success of Businesses of Female Entrepreneurs in Taiwan," Sustainability, MDPI, vol. 13(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
    2. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
    3. Tsagris, Michail, 2015. "Regression analysis with compositional data containing zero values," MPRA Paper 67868, University Library of Munich, Germany.
    4. Thomas-Agnan, Christine & Morais, Joanna, 2019. "Covariates impacts in compositional models and simplicial derivatives," TSE Working Papers 19-1057, Toulouse School of Economics (TSE).
    5. Morais, Joanna & Simioni, Michel & Thomas-Agnan, Christine, 2016. "A tour of regression models for explaining shares," TSE Working Papers 16-742, Toulouse School of Economics (TSE).
    6. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
    7. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    8. Patrick L. Combettes & Christian L. Müller, 2021. "Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 217-242, July.
    9. Monique Graf, 2020. "Regression for compositions based on a generalization of the Dirichlet distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 913-936, December.
    10. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    11. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.
    12. Michail Tsagris & Simon Preston & Andrew T. A. Wood, 2016. "Improved Classification for Compositional Data Using the α-transformation," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 243-261, July.
    13. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
    14. Tsagris, Michail, 2015. "A novel, divergence based, regression for compositional data," MPRA Paper 72769, University Library of Munich, Germany.
    15. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    16. Zhigang Li & Katherine Lee & Margaret R. Karagas & Juliette C. Madan & Anne G. Hoen & A. James O’Malley & Hongzhe Li, 2018. "Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 587-608, December.
    17. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    18. J. A. Martín-Fernández, 2021. "“Compositional Data Analysis in Practice” by Michael Greenacre Universitat Pompeu Fabra (Barcelona, Spain), Chapman and Hall/CRC, 2018," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 109-111, April.
    19. Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
    20. J. Haslett & M. Whiley & S. Bhattacharya & M. Salter‐Townshend & Simon P. Wilson & J. R. M. Allen & B. Huntley & F. J. G. Mitchell, 2006. "Bayesian palaeoclimate reconstruction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 395-438, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:12:p:2270-2285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.