IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v29y2020i4d10.1007_s10260-020-00512-y.html
   My bibliography  Save this article

Regression for compositions based on a generalization of the Dirichlet distribution

Author

Listed:
  • Monique Graf

    (Université de Neuchâtel
    Elpacos Statistics)

Abstract

The simplex is the geometrical locus of D-dimensional positive data with constant sum, called compositions. A possible distribution for compositions is the Dirichlet. In Dirichlet models, there are no scale parameters and the D shapes are assumed dependent on auxiliary variables. This peculiar feature makes Dirichlet models difficult to apply and to interpret. Here, we propose a generalization of the Dirichlet, called the simplicial generalized Beta (SGB) distribution. It includes an overall shape parameter, a scale composition and the D Dirichlet shapes. The SGB is flexible enough to accommodate many practical situations. SGB regression models are applied to data from the United Kingdom Time Use Survey. The R-package SGB makes the methods accessible to users.

Suggested Citation

  • Monique Graf, 2020. "Regression for compositions based on a generalization of the Dirichlet distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 913-936, December.
  • Handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00512-y
    DOI: 10.1007/s10260-020-00512-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00512-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00512-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wicker, Nicolas & Muller, Jean & Kalathur, Ravi Kiran Reddy & Poch, Olivier, 2008. "A maximum likelihood approximation method for Dirichlet's parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1315-1322, January.
    2. K. Hron & P. Filzmoser & K. Thompson, 2012. "Linear regression with compositional explanatory variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1115-1128, November.
    3. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
    4. Gueorguieva, Ralitza & Rosenheck, Robert & Zelterman, Daniel, 2008. "Dirichlet component regression and its applications to psychiatric data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5344-5355, August.
    5. Jiajia Chen & Xiaoqin Zhang & Shengjia Li, 2017. "Multiple linear regression with compositional response and covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2270-2285, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
    2. Thomas-Agnan, Christine & Morais, Joanna, 2019. "Covariates impacts in compositional models and simplicial derivatives," TSE Working Papers 19-1057, Toulouse School of Economics (TSE).
    3. Defever, F. & Riaño, A., 2022. "Firm-Destination Heterogeneity and the Distribution of Export Intensity," Working Papers 22/01, Department of Economics, City University London.
    4. Dargel, Lukas & Thomas-Agnan, Christine, 2023. "Share-ratio interpretations of compositional regression models," TSE Working Papers 23-1456, Toulouse School of Economics (TSE), revised 20 Sep 2023.
    5. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
    6. Tsagris, Michail, 2015. "Regression analysis with compositional data containing zero values," MPRA Paper 67868, University Library of Munich, Germany.
    7. Jiajia Chen & Xiaoqin Zhang & Shengjia Li, 2017. "Multiple linear regression with compositional response and covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2270-2285, September.
    8. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    9. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    10. Mauricio Velasquez, 2016. "Compositions vs Gini: A new metric to evaluate the effects of land-income disparities," 2016 Papers pve364, Job Market Papers.
    11. Janina Janurek & Sascha Abdel Hadi & Andreas Mojzisch & Jan Alexander Häusser, 2018. "The Association of the 24 Hour Distribution of Time Spent in Physical Activity, Work, and Sleep with Emotional Exhaustion," IJERPH, MDPI, vol. 15(9), pages 1-14, September.
    12. J. A. Martín-Fernández, 2021. "“Compositional Data Analysis in Practice” by Michael Greenacre Universitat Pompeu Fabra (Barcelona, Spain), Chapman and Hall/CRC, 2018," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 109-111, April.
    13. Andriansyah, Andriansyah & Messinis, George, 2016. "Intended use of IPO proceeds and firm performance: A quantile regression approach," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 14-30.
    14. T. H. A. Nguyen & T. Laurent & C. Thomas-Agnan & A. Ruiz-Gazen, 2022. "Analyzing the impacts of socio-economic factors on French departmental elections with CoDa methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(5), pages 1235-1251, April.
    15. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    16. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    17. Zhao, T.; & Sutton, M.; & Meacock, M.;, 2023. "Use of compositional covariates in linear regression: problems and solutions," Health, Econometrics and Data Group (HEDG) Working Papers 23/16, HEDG, c/o Department of Economics, University of York.
    18. Melo, Tatiane F.N. & Vasconcellos, Klaus L.P. & Lemonte, Artur J., 2009. "Some restriction tests in a new class of regression models for proportions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3972-3979, October.
    19. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    20. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00512-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.