IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i11p2575-2596.html
   My bibliography  Save this article

A single-featured EWMA- X control chart for detecting shifts in process mean and standard deviation

Author

Listed:
  • Chi-Shuan Liu
  • Fang-Chih Tien

Abstract

The combined EWMA- X chart is a commonly used tool for monitoring both large and small process shifts. However, this chart requires calculating and monitoring two statistics along with two sets of control limits. Thus, this study develops a single-featured EWMA- X (called SFEWMA- X ) control chart which has the ability to simultaneously monitor both large and small process shifts using only one set of statistic and control limits. The proposed SFEWMA- X chart is further extended to monitoring the shifts in process standard deviation. A set of simulated data are used to demonstrate the proposed chart's superior performance in terms of average run length compared with that of the traditional charts. The experimental examples also show that the SFEWMA- X chart is neater and easier to visually interpret than the original EWMA- X chart.

Suggested Citation

  • Chi-Shuan Liu & Fang-Chih Tien, 2011. "A single-featured EWMA- X control chart for detecting shifts in process mean and standard deviation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2575-2596, January.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2575-2596
    DOI: 10.1080/02664763.2011.559213
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.559213
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.559213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serel, Dogan A. & Moskowitz, Herbert, 2008. "Joint economic design of EWMA control charts for mean and variance," European Journal of Operational Research, Elsevier, vol. 184(1), pages 157-168, January.
    2. Vermaat, M.B. & van der Meulen, F.H. & Does, R.J.M.M., 2008. "Asymptotic behavior of the variance of the EWMA statistic for autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1673-1682, September.
    3. Maravelakis, Petros E. & Castagliola, Philippe, 2009. "An EWMA chart for monitoring the process standard deviation when parameters are estimated," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2653-2664, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Žmuk Berislav, 2016. "Capabilities of Statistical Residual-Based Control Charts in Short- and Long-Term Stock Trading," Naše gospodarstvo/Our economy, Sciendo, vol. 62(1), pages 12-26, March.
    2. Dumičić Ksenija & Žmuk Berislav, 2015. "Statistical Control Charts: Performances of Short Term Stock Trading in Croatia," Business Systems Research, Sciendo, vol. 6(1), pages 22-35, March.
    3. Lee, Pei-Hsi, 2013. "Joint statistical design of X¯ and s charts with combined double sampling and variable sampling interval," European Journal of Operational Research, Elsevier, vol. 225(2), pages 285-297.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huwang, Longcheen & Huang, Chun-Jung & Wang, Yi-Hua Tina, 2010. "New EWMA control charts for monitoring process dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2328-2342, October.
    2. Bersimis, Sotiris & Koutras, Markos V. & Maravelakis, Petros E., 2014. "A compound control chart for monitoring and controlling high quality processes," European Journal of Operational Research, Elsevier, vol. 233(3), pages 595-603.
    3. L Bessegato & R Quinino & L L Ho & L Duczmal, 2011. "Variable interval sampling in economical designs for online process control of attributes with misclassification errors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1365-1375, July.
    4. Ho, Linda Lee & Trindade, Anderson Laécio Galindo, 2009. "Economic design of an X chart for short-run production," International Journal of Production Economics, Elsevier, vol. 120(2), pages 613-624, August.
    5. Axel Gandy & Jan Terje Kvaløy, 2013. "Guaranteed Conditional Performance of Control Charts via Bootstrap Methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 647-668, December.
    6. Graham, M.A. & Mukherjee, A. & Chakraborti, S., 2012. "Distribution-free exponentially weighted moving average control charts for monitoring unknown location," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2539-2561.
    7. Wu, Zhang & Yang, Mei & Khoo, Michael B.C. & Castagliola, Philippe, 2011. "What are the best sample sizes for the Xbar and CUSUM charts?," International Journal of Production Economics, Elsevier, vol. 131(2), pages 650-662, June.
    8. Amir Ahmadi-Javid & Mohsen Ebadi, 2017. "Economic Design of Memory-Type Control Charts: The Fallacy of the Formula Proposed by Lorenzen and Vance (1986)," Papers 1708.06160, arXiv.org.
    9. Ou, Yanjing & Wu, Zhang & Goh, Thong Ngee, 2011. "A new SPRT chart for monitoring process mean and variance," International Journal of Production Economics, Elsevier, vol. 132(2), pages 303-314, August.
    10. Chenglong Li & Qin Su & Min Xie, 2016. "Economic modelling for statistical process control subject to a general quality deterioration," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1753-1770, March.
    11. Feng Zhang & Xi Wang & Honggao Cao, 2021. "Turnover-Adjusted Information Ratio," Papers 2105.10306, arXiv.org.
    12. F. Jamaluddin* & H. H. Ali & S. S. Syed Yahaya & Z. Zain, 2018. "The Performance of Robust Multivariate Ewma Control Charts," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 52-58:6.
    13. Amir Ahmadi-Javid & Mohsen Ebadi, 2021. "Economic design of memory-type control charts: The fallacy of the formula proposed by Lorenzen and Vance (1986)," Computational Statistics, Springer, vol. 36(1), pages 661-690, March.
    14. Yingjie Duan & Hong Ni & Xiaoyong Zhu, 2022. "A Dynamic Cache Allocation Mechanism (DCAM) for Reliable Multicast in Information-Centric Networking," Future Internet, MDPI, vol. 14(4), pages 1-15, March.
    15. Huang, Wenpo & Shu, Lianjie & Jiang, Wei, 2012. "Evaluation of exponentially weighted moving variance control chart subject to linear drifts," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4278-4289.
    16. Johannssen, Arne & Chukhrova, Nataliya & Castagliola, Philippe, 2022. "The performance of the hypergeometric np chart with estimated parameter," European Journal of Operational Research, Elsevier, vol. 296(3), pages 873-899.
    17. H. You & Michael Khoo & P. Castagliola & Yanjing Ou, 2015. "Side sensitive group runs $$\bar{{X}}$$ X ¯ chart with estimated process parameters," Computational Statistics, Springer, vol. 30(4), pages 1245-1278, December.
    18. Lee, Pei-Hsi, 2013. "Joint statistical design of X¯ and s charts with combined double sampling and variable sampling interval," European Journal of Operational Research, Elsevier, vol. 225(2), pages 285-297.
    19. Ou, Yanjing & Wu, Zhang & Tsung, Fugee, 2012. "A comparison study of effectiveness and robustness of control charts for monitoring process mean," International Journal of Production Economics, Elsevier, vol. 135(1), pages 479-490.
    20. Human, S.W. & Chakraborti, S. & Smit, C.F., 2010. "Shewhart-type control charts for variation in phase I data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 863-874, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2575-2596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.