IDEAS home Printed from
   My bibliography  Save this article

Statistical learning theory for fitting multimodal distribution to rainfall data: an application


  • Himadri Ghosh
  • Prajneshu


The promising methodology of the “Statistical Learning Theory” for the estimation of multimodal distribution is thoroughly studied. The “tail” is estimated through Hill's, UH and moment methods. The threshold value is determined by nonparametric bootstrap and the minimum mean square error criterion. Further, the “body” is estimated by the nonparametric structural risk minimization method of the empirical distribution function under the regression set-up. As an illustration, rainfall data for the meteorological subdivision of Orissa, India during the period 1871--2006 are used. It is shown that Hill's method has performed the best for tail density. Finally, the combined estimated “body” and “tail” of the multimodal distribution is shown to capture the multimodality present in the data.

Suggested Citation

  • Himadri Ghosh & Prajneshu, 2011. "Statistical learning theory for fitting multimodal distribution to rainfall data: an application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2533-2545, January.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2533-2545
    DOI: 10.1080/02664763.2011.559210

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:11:p:2533-2545. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.