IDEAS home Printed from
   My bibliography  Save this article

Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials


  • Rosaria Lombardo
  • Eric Beh
  • Antonello D'Ambra


In situations where the structure of one of the variables of a contingency table is ordered recent theory involving the augmentation of singular vectors and orthogonal polynomials has shown to be applicable for performing symmetric and non-symmetric correspondence analysis. Such an approach has the advantage of allowing the user to identify the source of variation between the categories in terms of components that reflect linear, quadratic and higher-order trends. The purpose of this paper is to focus on the study of two asymmetrically related variables cross-classified to form a two-way contingency table where only one of the variables has an ordinal structure.

Suggested Citation

  • Rosaria Lombardo & Eric Beh & Antonello D'Ambra, 2011. "Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2119-2132.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2119-2132
    DOI: 10.1080/02664763.2010.545118

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rosaria Lombardo & Eric J. Beh & Pieter M. Kroonenberg, 2016. "Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 325-349, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2119-2132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.