IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v34y2007i9p1035-1050.html
   My bibliography  Save this article

Explorative Data Analysis and CATANOVA for Ordinal Variables: An Integrated Approach

Author

Listed:
  • Pasquale Sarnacchiaro
  • Antonello D'ambra

Abstract

Categorical analysis of variance (CATANOVA) is a statistical method designed to analyse variability between treatments of interest to the researcher. There are well-established links between CATANOVA and the τ statistic of Goodman and Kruskal which, for the purpose of the graphical identification of this variation, is partitioned using singular value decomposition for Non-Symmetrical Correspondence Analysis (NSCA) (D'Ambra & Lauro, 1989). The aim of this paper is to show a decomposition of the Between Sum of Squares (BSS), measured both in CATANOVA framework and in the statistic τ, into location, dispersion and higher order components. This decomposition has been developed using Emerson's orthogonal polynomials. Starting from this decomposition, a statistical test and a confidence circle have been calculated for each component and for each modality in which the BSS was decomposed, respectively. A Customer Satisfaction study has been considered to explain the methodology.

Suggested Citation

  • Pasquale Sarnacchiaro & Antonello D'ambra, 2007. "Explorative Data Analysis and CATANOVA for Ordinal Variables: An Integrated Approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1035-1050.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:9:p:1035-1050
    DOI: 10.1080/02664760701591937
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701591937
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701591937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ida Camminatiello & Antonello D’Ambra & Luigi D’Ambra, 2022. "The association in two-way ordinal contingency tables through global odds ratios," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 9-22, April.
    2. Pasquale Sarnacchiaro & Antonello D’Ambra & Luigi D’Ambra, 2016. "CATANOVA for ordinal variables using orthogonal polynomials with different scoring methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(13), pages 2490-2502, October.
    3. Rosaria Lombardo & Eric Beh & Antonello D'Ambra, 2011. "Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2119-2132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:9:p:1035-1050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.