IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v35y2008i9p947-965.html
   My bibliography  Save this article

Measures of fit in principal component and canonical variate analyses

Author

Listed:
  • Sugnet Gardner-Lubbe
  • Niël Le Roux
  • John Gowers

Abstract

Treating principal component analysis (PCA) and canonical variate analysis (CVA) as methods for approximating tables, we develop measures, collectively termed predictivity, that assess the quality of fit independently for each variable and for all dimensionalities. We illustrate their use with data from aircraft development, the African timber industry and copper froth measurements from the mining industry. Similar measures are described for assessing the predictivity associated with the individual samples (in the case of PCA and CVA) or group means (in the case of CVA). For these measures to be meaningful, certain essential orthogonality conditions must hold that are shown to be satisfied by predictivity.

Suggested Citation

  • Sugnet Gardner-Lubbe & Niël Le Roux & John Gowers, 2008. "Measures of fit in principal component and canonical variate analyses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 947-965.
  • Handle: RePEc:taf:japsta:v:35:y:2008:i:9:p:947-965 DOI: 10.1080/02664760802185399
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760802185399
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    3. Simon M. Potter, 1993. "A Nonlinear Approach to U.S. GNP," UCLA Economics Working Papers 693, UCLA Department of Economics.
    4. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    5. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    7. Ludlow, Jorge & Enders, Walter, 2000. "Estimating non-linear ARMA models using Fourier coefficients," International Journal of Forecasting, Elsevier, vol. 16(3), pages 333-347.
    8. Pami Dua, 2008. "Interest Rate Modeling and Forecasting in India," Working Papers id:1521, eSocialSciences.
    9. Guy Melard, 1985. "Examples of the evolutionary spectrum theory," ULB Institutional Repository 2013/13696, ULB -- Universite Libre de Bruxelles.
    10. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    11. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    12. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:35:y:2008:i:9:p:947-965. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.