IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p458-d1580092.html
   My bibliography  Save this article

Partial Least Squares Regression for Binary Data

Author

Listed:
  • Laura Vicente-Gonzalez

    (Departamento de Estadística, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain)

  • Elisa Frutos-Bernal

    (Departamento de Estadística, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain)

  • Jose Luis Vicente-Villardon

    (Departamento de Estadística, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain)

Abstract

Classical Partial Least Squares Regression (PLSR) models were developed primarily for continuous data, allowing dimensionality reduction while preserving relationships between predictors and responses. However, their application to binary data is limited. This study introduces Binary Partial Least Squares Regression (BPLSR), a novel extension of the PLSR methodology designed specifically for scenarios involving binary predictors and responses. BPLSR adapts the classical PLSR framework to handle the unique properties of binary datasets. A key feature of this approach is the introduction of a triplot representation that integrates logistic biplots. This visualization tool provides an intuitive interpretation of relationships between individuals and variables from both predictor and response matrices, enhancing the interpretability of binary data analysis. To illustrate the applicability and effectiveness of BPLSR, the method was applied to a real-world dataset of strains of Colletotrichum graminicola , a pathogenic fungus. The results demonstrated the ability of the method to represent binary relationships between predictors and responses, underscoring its potential as a robust analytical tool. This work extends the capabilities of traditional PLSR methods and provides a practical and versatile solution for binary data analysis with broad applications in diverse research areas.

Suggested Citation

  • Laura Vicente-Gonzalez & Elisa Frutos-Bernal & Jose Luis Vicente-Villardon, 2025. "Partial Least Squares Regression for Binary Data," Mathematics, MDPI, vol. 13(3), pages 1-29, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:458-:d:1580092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Opeoluwa F. Oyedele & Sugnet Lubbe, 2015. "The construction of a partial least-squares biplot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2449-2460, November.
    2. de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
    3. Bastien, Philippe & Vinzi, Vincenzo Esposito & Tenenhaus, Michel, 2005. "PLS generalised linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 17-46, January.
    4. Sugnet Gardner-Lubbe & Niël Le Roux & John Gowers, 2008. "Measures of fit in principal component and canonical variate analyses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 947-965.
    5. Roozbeh, Mahdi, 2018. "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 45-61.
    6. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Vicente-Gonzalez & Jose Luis Vicente-Villardon, 2022. "Partial Least Squares Regression for Binary Responses and Its Associated Biplot Representation," Mathematics, MDPI, vol. 10(15), pages 1-23, July.
    2. Meisam Moghimbeygi & Anahita Nodehi, 2022. "Multinomial Principal Component Logistic Regression on Shape Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 578-599, November.
    3. Aziza Usmanova & Ahmed Aziz & Dilshodjon Rakhmonov & Walid Osamy, 2022. "Utilities of Artificial Intelligence in Poverty Prediction: A Review," Sustainability, MDPI, vol. 14(21), pages 1-39, October.
    4. Julio César Hernández-Sánchez & José Luis Vicente-Villardón, 2017. "Logistic biplot for nominal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 307-326, June.
    5. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    6. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    7. André Altmann & Michal Rosen-Zvi & Mattia Prosperi & Ehud Aharoni & Hani Neuvirth & Eugen Schülter & Joachim Büch & Daniel Struck & Yardena Peres & Francesca Incardona & Anders Sönnerborg & Rolf Kaise, 2008. "Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-9, October.
    8. Janns Alvaro Patiño-Saucedo & Paola Patricia Ariza-Colpas & Shariq Butt-Aziz & Marlon Alberto Piñeres-Melo & José Luis López-Ruiz & Roberto Cesar Morales-Ortega & Emiro De-la-hoz-Franco, 2022. "Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    9. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    10. repec:wyi:journl:002122 is not listed on IDEAS
    11. Guoping Zeng & Sha Tao, 2023. "A Generalized Linear Transformation and Its Effects on Logistic Regression," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    12. Seokho Lee & Hyejin Shin & Sang Han Lee, 2016. "Label‐noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study," Biometrics, The International Biometric Society, vol. 72(4), pages 1325-1335, December.
    13. Wayne DeSarbo & Heungsun Hwang & Ashley Stadler Blank & Eelco Kappe, 2015. "Constrained Stochastic Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 516-534, June.
    14. Tasos Kalandrakis, 2006. "Roll Call Data and Ideal Points," Wallis Working Papers WP42, University of Rochester - Wallis Institute of Political Economy.
    15. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    16. ben Jabeur, Sami & Mefteh-Wali, Salma & Carmona, Pedro, 2021. "The impact of institutional and macroeconomic conditions on aggregate business bankruptcy," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 108-119.
    17. Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
    18. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    19. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    20. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    21. Sami BEN JABEUR, 2014. "Prévision de la détresse financière des entreprises françaises: Approche par la régression logistique PLS," Working Papers 2014-321, Department of Research, Ipag Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:458-:d:1580092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.