IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v29y2002i1-4p85-102.html
   My bibliography  Save this article

The use of auxiliary variables in capture-recapture modelling: An overview

Author

Listed:
  • Kenneth Pollock

Abstract

I review the use of auxiliary variables in capture-recapture models for estimation of demographic parameters (e.g. capture probability, population size, survival probability, and recruitment, emigration and immigration numbers). I focus on what has been done in current research and what still needs to be done. Typically in the literature, covariate modelling has made capture and survival probabilities functions of covariates, but there are good reasons also to make other parameters functions of covariates as well. The types of covariates considered include environmental covariates that may vary by occasion but are constant over animals, and individual animal covariates that are usually assumed constant over time. I also discuss the difficulties of using time-dependent individual animal covariates and some possible solutions. Covariates are usually assumed to be measured without error, and that may not be realistic. For closed populations, one approach to modelling heterogeneity in capture probabilities uses observable individual covariates and is thus related to the primary purpose of this paper. The now standard Huggins-Alho approach conditions on the captured animals and then uses a generalized Horvitz-Thompson estimator to estimate population size. This approach has the advantage of simplicity in that one does not have to specify a distribution for the covariates, and the disadvantage is that it does not use the full likelihood to estimate population size. Alternately one could specify a distribution for the covariates and implement a full likelihood approach to inference to estimate the capture function, the covariate probability distribution, and the population size. The general Jolly-Seber open model enables one to estimate capture probability, population sizes, survival rates, and birth numbers. Much of the focus on modelling covariates in program MARK has been for survival and capture probability in the Cormack-Jolly-Seber model and its generalizations (including tag-return models). These models condition on the number of animals marked and released. A related, but distinct, topic is radio telemetry survival modelling that typically uses a modified Kaplan-Meier method and Cox proportional hazards model for auxiliary variables. Recently there has been an emphasis on integration of recruitment in the likelihood, and research on how to implement covariate modelling for recruitment and perhaps population size is needed. The combined open and closed 'robust' design model can also benefit from covariate modelling and some important options have already been implemented into MARK. Many models are usually fitted to one data set. This has necessitated development of model selection criteria based on the AIC (Akaike Information Criteria) and the alternative of averaging over reasonable models. The special problems of estimating over-dispersion when covariates are included in the model and then adjusting for over-dispersion in model selection could benefit from further research.

Suggested Citation

  • Kenneth Pollock, 2002. "The use of auxiliary variables in capture-recapture modelling: An overview," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 85-102.
  • Handle: RePEc:taf:japsta:v:29:y:2002:i:1-4:p:85-102
    DOI: 10.1080/02664760120108430
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760120108430
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760120108430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shirley Pledger, 2000. "Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures," Biometrics, The International Biometric Society, vol. 56(2), pages 434-442, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baffour Bernard & Brown James J. & Smith Peter W.F., 2021. "Latent Class Analysis for Estimating an Unknown Population Size – with Application to Censuses," Journal of Official Statistics, Sciendo, vol. 37(3), pages 673-697, September.
    2. Oliver, Lauren J. & Morgan, Byron J.T. & Durant, Sarah M. & Pettorelli, Nathalie, 2011. "Individual heterogeneity in recapture probability and survival estimates in cheetah," Ecological Modelling, Elsevier, vol. 222(3), pages 776-784.
    3. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    4. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    5. Simone Vincenzi & Marc Mangel & Alain J Crivelli & Stephan Munch & Hans J Skaug, 2014. "Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-16, September.
    6. Richard Huggins & Wen‐Han Hwang, 2007. "Non‐parametric estimation of population size from capture–recapture data when the capture probability depends on a covariate," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 429-443, August.
    7. Wen-Han Hwang & Steve Y. H. Huang, 2003. "Estimation in Capture-Recapture Models When Covariates Are Subject to Measurement Errors," Biometrics, The International Biometric Society, vol. 59(4), pages 1113-1122, December.
    8. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    9. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    10. Heijden Peter G.M. van der & Smith Paul A. & Cruyff Maarten & Bakker Bart, 2018. "An Overview of Population Size Estimation where Linking Registers Results in Incomplete Covariates, with an Application to Mode of Transport of Serious Road Casualties," Journal of Official Statistics, Sciendo, vol. 34(1), pages 239-263, March.
    11. Simon J. Bonner & Byron J. T. Morgan & Ruth King, 2010. "Continuous Covariates in Mark-Recapture-Recovery Analysis: A Comparison of Methods," Biometrics, The International Biometric Society, vol. 66(4), pages 1256-1265, December.
    12. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    13. Li, Haoqi & Lin, Huazhen & Yip, Paul S.F. & Li, Yuan, 2019. "Estimating population size of heterogeneous populations with large data sets and a large number of parameters," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 34-44.
    14. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.
    15. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    16. S. J. Bonner & C. J. Schwarz, 2006. "An Extension of the Cormack–Jolly–Seber Model for Continuous Covariates with Application to Microtus pennsylvanicus," Biometrics, The International Biometric Society, vol. 62(1), pages 142-149, March.
    17. Yih-Huei Huang & Wen-Han Hwang & Fei-Yin Chen, 2011. "Differential Measurement Errors in Zero-Truncated Regression Models for Count Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1471-1480, December.
    18. Stoklosa, Jakub & Dann, Peter & Huggins, Richard M. & Hwang, Wen-Han, 2016. "Estimation of survival and capture probabilities in open population capture–recapture models when covariates are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 74-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    2. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    3. Murray G. Efford & Christine M. Hunter, 2018. "Spatial capture–mark–resight estimation of animal population density," Biometrics, The International Biometric Society, vol. 74(2), pages 411-420, June.
    4. George Seber & Carl Schwarz, 2002. "Capture-recapture: Before and after EURING 2000," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 5-18.
    5. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    6. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    7. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    8. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    9. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2003. "Open Capture-Recapture Models with Heterogeneity: I. Cormack-Jolly-Seber Model," Biometrics, The International Biometric Society, vol. 59(4), pages 786-794, December.
    10. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    11. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2021. "Joint Modeling of Distances and Times in Point-Count Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 289-305, June.
    12. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.
    13. Linda J. Young & Michael Jacobsen, 2022. "Sample Design and Estimation When Using a Web-Scraped List Frame and Capture-Recapture Methods," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 261-279, June.
    14. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    15. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    16. Álvarez de Toledo, Pablo & Núñez, Fernando & Usabiaga, Carlos, 2018. "Matching and clustering in square contingency tables. Who matches with whom in the Spanish labour market," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 135-159.
    17. Di Cecco Davide & Di Zio Marco & Filipponi Danila & Rocchetti Irene, 2018. "Population Size Estimation Using Multiple Incomplete Lists with Overcoverage," Journal of Official Statistics, Sciendo, vol. 34(2), pages 557-572, June.
    18. Wen-Han Hwang & Richard Huggins & Lu-Fang Chen, 2017. "A Note on the Inverse Birthday Problem With Applications," The American Statistician, Taylor & Francis Journals, vol. 71(3), pages 191-201, July.
    19. Manan Gupta & Amitabh Joshi & T N C Vidya, 2017. "Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
    20. Klaich, M. Javier & Kinas, Paul G. & Pedraza, Susana N. & Coscarella, Mariano A. & Crespo, Enrique A., 2011. "Estimating dyad association probability under imperfect and heterogeneous detection," Ecological Modelling, Elsevier, vol. 222(15), pages 2642-2650.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:29:y:2002:i:1-4:p:85-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.