IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v28y2016i1p132-151.html
   My bibliography  Save this article

Adaptive likelihood estimator of conditional variance function

Author

Listed:
  • Panagiotis Avramidis

Abstract

Modelling volatility in the form of conditional variance function has been a popular method mainly due to its application in financial risk management. Among others, we distinguish the parametric GARCH models and the nonparametric local polynomial approximation using weighted least squares or gaussian likelihood function. We introduce an alternative likelihood estimate of conditional variance and we show that substitution of the error density with its estimate yields similar asymptotic properties, that is, the proposed estimate is adaptive to the error distribution. Theoretical comparison with existing estimates reveals substantial gains in efficiency, especially if error distribution has fatter tails than Gaussian distribution. Simulated data confirm the theoretical findings while an empirical example demonstrates the gains of the proposed estimate.

Suggested Citation

  • Panagiotis Avramidis, 2016. "Adaptive likelihood estimator of conditional variance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 132-151, March.
  • Handle: RePEc:taf:gnstxx:v:28:y:2016:i:1:p:132-151
    DOI: 10.1080/10485252.2015.1122189
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2015.1122189
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Terence Tao, 2002. "Relative efficiencies of kernel and local likelihood density estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 537-547, August.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
    4. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    8. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
    9. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    10. Isabel Casas & Irene Gijbels, 2012. "Unstable volatility: the break-preserving local linear estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 883-904, December.
    11. Yu, K. & Jones, M.C., 2004. "Likelihood-Based Local Linear Estimation of the Conditional Variance Function," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 139-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linton, O. & Xiao, Z., 2019. "Efficient Estimation of Nonparametric Regression in The Presence of Dynamic Heteroskedasticit," Cambridge Working Papers in Economics 1907, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:28:y:2016:i:1:p:132-151. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/GNST20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.