IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v33y2014i1-4p218-250.html
   My bibliography  Save this article

I Got More Data, My Model is More Refined, but My Estimator is Getting Worse! Am I Just Dumb?

Author

Listed:
  • Xiao-Li Meng
  • Xianchao Xie

Abstract

Possibly, but more likely you are merely a victim of conventional wisdom. More data or better models by no means guarantee better estimators (e.g., with a smaller mean squared error), when you are not following probabilistically principled methods such as MLE (for large samples) or Bayesian approaches. Estimating equations are particularly vulnerable in this regard, almost a necessary price for their robustness. These points will be demonstrated via common tasks of estimating regression parameters and correlations, under simple models such as bivariate normal and ARCH(1). Some general strategies for detecting and avoiding such pitfalls are suggested, including checking for self-efficiency (Meng, 1994; Statistical Science ) and adopting a guiding working model. Using the example of estimating the autocorrelation ρ under a stationary AR(1) model, we also demonstrate the interaction between model assumptions and observation structures in seeking additional information, as the sampling interval s increases. Furthermore, for a given sample size, the optimal s for minimizing the asymptotic variance of is s = 1 if and only if ρ-super-2 ≤ 1/3; beyond that region the optimal s increases at the rate of log -super- - 1(ρ-super- - 2) as ρ approaches a unit root, as does the gain in efficiency relative to using s = 1. A practical implication of this result is that the so-called "non-informative" Jeffreys prior can be far from non-informative even for stationary time series models, because here it converges rapidly to a point mass at a unit root as s increases. Our overall emphasis is that intuition and conventional wisdom need to be examined via critical thinking and theoretical verification before they can be trusted fully.

Suggested Citation

  • Xiao-Li Meng & Xianchao Xie, 2014. "I Got More Data, My Model is More Refined, but My Estimator is Getting Worse! Am I Just Dumb?," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 218-250, June.
  • Handle: RePEc:taf:emetrv:v:33:y:2014:i:1-4:p:218-250
    DOI: 10.1080/07474938.2013.808567
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2013.808567
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2013.808567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iskrev, Nikolay, 2018. "Are asset price data informative about news shocks? A DSGE perspective," Working Paper Series 2161, European Central Bank.
    2. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    3. Sarah Friedrich & Gerd Antes & Sigrid Behr & Harald Binder & Werner Brannath & Florian Dumpert & Katja Ickstadt & Hans A. Kestler & Johannes Lederer & Heinz Leitgöb & Markus Pauly & Ansgar Steland & A, 2022. "Is there a role for statistics in artificial intelligence?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 823-846, December.
    4. Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
    5. Josef Ditrich, 2015. "Data representativeness problem in credit scoring," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2015(3), pages 3-17.
    6. Iskrev, Nikolay, 2019. "On the sources of information about latent variables in DSGE models," European Economic Review, Elsevier, vol. 119(C), pages 318-332.
    7. Xiao-Li Meng, 2016. "Discussion: The Q-q Dynamic for Deeper Learning and Research," International Statistical Review, International Statistical Institute, vol. 84(2), pages 181-189, August.
    8. Lewis, Gabriel, 2022. "Heteroskedasticity and Clustered Covariances from a Bayesian Perspective," MPRA Paper 116662, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:33:y:2014:i:1-4:p:218-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.