IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v18y1999i3p271-286.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

On trends and constants in periodic autoregressions

Author

Listed:
  • Richard Paap
  • Philip Hans Franses

Abstract

Periodic autoregressions are characterised by autoregressive structures that vary with the season. If a time series is periodically integrated, one needs a seasonally varying differencing filter to remove the stochastic trend. When the periodic regression model contains constants and trends with unrestricted parameters, the data can show diverging seasonal deterministic trends. In this paper we derive explicit expressions for parameter restrictions that result in common deterministic trends under periodic trend stationarity and periodic integration.

Suggested Citation

  • Richard Paap & Philip Hans Franses, 1999. "On trends and constants in periodic autoregressions," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 271-286.
  • Handle: RePEc:taf:emetrv:v:18:y:1999:i:3:p:271-286
    DOI: 10.1080/07474939908800446
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474939908800446
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474939908800446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. del Barrio Castro, Tomás & Osborn, Denise R., 2008. "Cointegration For Periodically Integrated Processes," Econometric Theory, Cambridge University Press, vol. 24(1), pages 109-142, February.
    2. Franses, Ph.H.B.F. & Paap, R., 1999. "Forecasting with periodic autoregressive time series models," Econometric Institute Research Papers EI 9927-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. del Barrio Castro, Tomás, 2021. "Testing for the cointegration rank between Periodically Integrated processes," MPRA Paper 106603, University Library of Munich, Germany, revised 2021.
    4. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2022. "On cointegration for processes integrated at different frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 412-435, May.
    5. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    6. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    7. Eiji Kurozumi, 2002. "Testing For Periodic Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 243-270.
    8. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    9. Christiano, Lawrence J. & Todd, Richard M., 2002. "The conventional treatment of seasonality in business cycle analysis: does it create distortions?," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 335-364, March.
    10. del Barrio Castro Tomás & Osborn Denise R, 2011. "Nonparametric Tests for Periodic Integration," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-35, February.
    11. del Barrio Castro, Tomás, 2021. "Testing for the cointegration rank between Periodically Integrated processes," MPRA Paper 106603, University Library of Munich, Germany, revised 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:18:y:1999:i:3:p:271-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.