IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Predicting Academic Performance by Data Mining Methods

  • J. -P. Vandamme
  • N. Meskens
  • J. -F. Superby
Registered author(s):

    Academic failure among first-year university students has long fuelled a large number of debates. Many educational psychologists have tried to understand and then explain it. Many statisticians have tried to foresee it. Our research aims to classify, as early in the academic year as possible, students into three groups: the 'low-risk' students, who have a high probability of succeeding; the 'medium-risk' students, who may succeed thanks to the measures taken by the university; and the 'high-risk' students, who have a high probability of failing (or dropping out). This article describes our methodology and provides the most significant variables correlated to academic success among all the questions asked to 533 first-year university students during November of academic year 2003/04. Finally, it presents the results of the application of discriminant analysis, neural networks, random forests and decision trees aimed at predicting those students' academic success.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.tandfonline.com/10.1080/09645290701409939
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Education Economics.

    Volume (Year): 15 (2007)
    Issue (Month): 4 ()
    Pages: 405-419

    as
    in new window

    Handle: RePEc:taf:edecon:v:15:y:2007:i:4:p:405-419
    Contact details of provider: Web page: http://www.tandfonline.com/CEDE20

    Order Information: Web: http://www.tandfonline.com/pricing/journal/CEDE20

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:edecon:v:15:y:2007:i:4:p:405-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.