IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v27y2020i1-2p99-131.html
   My bibliography  Save this article

Optimal Generation and Trading in Solar Renewable Energy Certificate (SREC) Markets

Author

Listed:
  • Arvind Shrivats
  • Sebastian Jaimungal

Abstract

SREC markets are a relatively novel market-based system to incentivize the production of energy from solar means. A regulator imposes a floor on the amount of energy each regulated firm must generate from solar power in a given period and provides them with certificates for each generated MWh. Firms offset these certificates against the floor and pay a penalty for any lacking certificates. Certificates are tradable assets, allowing firms to purchase/sell them freely. In this work, we formulate a stochastic control problem for generating and trading in SREC markets from a regulated firm’s perspective. We account for generation and trading costs, the impact both have on SREC prices, provide a characterization of the optimal strategy and develop a numerical algorithm to solve this control problem. Through numerical experiments, we explore how a firm who acts optimally behaves under various conditions. We find that an optimal firm’s generation and trading behaviour can be separated into various regimes, based on the marginal benefit of obtaining an additional SREC, and validate our theoretical characterization of the optimal strategy. We also conduct parameter sensitivity experiments.

Suggested Citation

  • Arvind Shrivats & Sebastian Jaimungal, 2020. "Optimal Generation and Trading in Solar Renewable Energy Certificate (SREC) Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(1-2), pages 99-131, July.
  • Handle: RePEc:taf:apmtfi:v:27:y:2020:i:1-2:p:99-131
    DOI: 10.1080/1350486X.2020.1754260
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2020.1754260
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2020.1754260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Hui, Wang & Xin-gang, Zhao & Ling-zhi, Ren & Fan, Lu, 2021. "An agent-based modeling approach for analyzing the influence of market participants’ strategic behavior on green certificate trading," Energy, Elsevier, vol. 218(C).
    3. Olivier Féron & Peter Tankov & Laura Tinsi, 2020. "Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player," Risks, MDPI, vol. 8(4), pages 1-21, December.
    4. Masaaki Fujii & Akihiko Takahashi, 2021. "``Equilibrium Price Formation with a Major Player and its Mean Field Limit''," CIRJE F-Series CIRJE-F-1162, CIRJE, Faculty of Economics, University of Tokyo.
    5. René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Mean Field Models to Regulate Carbon Emissions in Electricity Production," Dynamic Games and Applications, Springer, vol. 12(3), pages 897-928, September.
    6. Liam Welsh & Sebastian Jaimungal, 2024. "Nash Equilibria in Greenhouse Gas Offset Credit Markets," Papers 2401.01427, arXiv.org, revised Jun 2024.
    7. Cho, Sangmin & Kim, Jinsoo & Lim, Deokoh, 2024. "Optimal design of renewable energy certificate multipliers using an LCOE-Integrated AHP model: A case study of South Korea," Renewable Energy, Elsevier, vol. 226(C).
    8. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    9. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    10. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    11. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    12. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," Papers 2102.10756, arXiv.org, revised Feb 2022.
    13. Steven Campbell & Yichao Chen & Arvind Shrivats & Sebastian Jaimungal, 2021. "Deep Learning for Principal-Agent Mean Field Games," Papers 2110.01127, arXiv.org.
    14. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:27:y:2020:i:1-2:p:99-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.