IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i7d10.1007_s11269-024-03774-3.html
   My bibliography  Save this article

Water Quality Prediction in Urban Waterways Based on Wavelet Packet Denoising and LSTM

Author

Listed:
  • Jiafeng Pang

    (Sun Yat-Sen University)

  • Wei Luo

    (Sun Yat-Sen University)

  • Zeyu Yao

    (Sun Yat-Sen University)

  • Jing Chen

    (Guangzhou Feng Ze-Yuan Water Conservancy Technology Co., Ltd)

  • Chunyu Dong

    (Sun Yat-Sen University
    Southern Marine Science and Engineering Guangdong Laboratory)

  • Kairong Lin

    (Sun Yat-Sen University
    Southern Marine Science and Engineering Guangdong Laboratory)

Abstract

The prediction of water quality in urban rivers plays a crucial role in supporting water environment management. This study collected real-time water quality monitoring data from four stations in the Fenjiang River Basin of Foshan City, spanning from 2016 to 2021. Then the Wavelet Packet Denoising (WPD) technique was applied to reduce noise interference in historical monitoring data. Subsequently, a single-factor water quality prediction model was developed, which is based on Long Short-Term Memory (LSTM), focusing on chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The results of this study demonstrate that the integration of WPD with LSTM, referred to as WPD-LSTM, outperformed conventional LSTM models in terms of predictive accuracy. Notably, the WPD-LSTM model exhibited superior performance in predicting the impact of COD and NH3-N on water quality in the Fenjiang River, surpassing the traditional LSTM model over a prediction period of 12 h and 3 days. In the 12-h prediction, the RMSE values of NH3-N predictions in the four monitoring sections decreased by 55% to 67%, and the RMSE values of COD predictions decreased by 18% to 51%.. In the 3-day prediction, the RMSE values of NH3-N predictions in the four monitoring sections decreased by 40% to 83%, and the RMSE values of COD predictions decreased by 50% to 69%. By employing the WPD-LSTM method, this study contributes to improving the precision of water quality prediction, thereby providing valuable insights for effective water environment management in urban river systems.

Suggested Citation

  • Jiafeng Pang & Wei Luo & Zeyu Yao & Jing Chen & Chunyu Dong & Kairong Lin, 2024. "Water Quality Prediction in Urban Waterways Based on Wavelet Packet Denoising and LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2399-2420, May.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03774-3
    DOI: 10.1007/s11269-024-03774-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03774-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03774-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Nagesh Kumar & K. Srinivasa Raju & T. Sathish, 2004. "River Flow Forecasting using Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 143-161, April.
    2. S. Khorram & N. Jehbez, 2023. "A Hybrid CNN-LSTM Approach for Monthly Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4097-4121, August.
    3. Zhuoqi Wang & Yuan Si & Haibo Chu, 2022. "Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4575-4590, September.
    4. Ping Liu & Jin Wang & Arun Kumar Sangaiah & Yang Xie & Xinchun Yin, 2019. "Analysis and Prediction of Water Quality Using LSTM Deep Neural Networks in IoT Environment," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhagwan Das & Amr Adel & Tony Jan & M. D. Wahiduzzaman, 2025. "Water Quality Management using Federated Deep Learning in Developing Southeastern Asian Country," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(4), pages 1893-1909, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Diamantopoulou & Vassilis Antonopoulos & Dimitris Papamichail, 2007. "Cascade Correlation Artificial Neural Networks for Estimating Missing Monthly Values of Water Quality Parameters in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 649-662, March.
    2. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    3. Kagiso Samuel More & Christian Wolkersdorfer, 2022. "Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2813-2826, June.
    4. Allison Lassiter & Nicole Leonard, 2022. "A systematic review of municipal smart water for climate adaptation and mitigation," Environment and Planning B, , vol. 49(5), pages 1406-1430, June.
    5. Pin-Chun Huang & Kuo-Lin Hsu & Kwan Tun Lee, 2021. "Improvement of Two-Dimensional Flow-Depth Prediction Based on Neural Network Models By Preprocessing Hydrological and Geomorphological Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1079-1100, February.
    6. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    7. Eric Hitimana & Gaurav Bajpai & Richard Musabe & Louis Sibomana & Jayavel Kayalvizhi, 2021. "Implementation of IoT Framework with Data Analysis Using Deep Learning Methods for Occupancy Prediction in a Building," Future Internet, MDPI, vol. 13(3), pages 1-19, March.
    8. Heelak Choi & Sang-Ik Suh & Su-Hee Kim & Eun Jin Han & Seo Jin Ki, 2021. "Assessing the Performance of Deep Learning Algorithms for Short-Term Surface Water Quality Prediction," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
    9. Kostić, Srđan & Stojković, Milan & Prohaska, Stevan, 2016. "Hydrological flow rate estimation using artificial neural networks: Model development and potential applications," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 373-385.
    10. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    11. Xiaonan Ji & Jianghai Chen & Yali Guo, 2022. "A Multi-Dimensional Investigation on Water Quality of Urban Rivers with Emphasis on Implications for the Optimization of Monitoring Strategy," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    12. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    13. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    14. Docheshmeh Gorgij, A. & Askari, Gh & Taghipour, A.A. & Jami, M. & Mirfardi, M., 2023. "Spatiotemporal Forecasting of the Groundwater Quality for Irrigation Purposes, Using Deep Learning Method: Long Short-Term Memory (LSTM)," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    16. Shivshanker Patel & Parthasarathy Ramachandran, 2015. "A Comparison of Machine Learning Techniques for Modeling River Flow Time Series: The Case of Upper Cauvery River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 589-602, January.
    17. Thiago Victor Medeiros Nascimento & Celso Augusto Guimarães Santos & Camilo Allyson Simões Farias & Richarde Marques Silva, 2022. "Monthly Streamflow Modeling Based on Self-Organizing Maps and Satellite-Estimated Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2359-2377, May.
    18. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    19. Tingqi Wang & Yuting Guo & Mazina Svetlana Evgenievna & Zhenjiang Wu, 2024. "Application of a Multi-Model Fusion Forecasting Approach in Runoff Prediction: A Case Study of the Yangtze River Source Region," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
    20. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03774-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.