IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i7d10.1007_s11269-024-03760-9.html
   My bibliography  Save this article

A Comparative Assessment of Decision Tree Algorithms for Index of Sediment Connectivity Modelling

Author

Listed:
  • Haniyeh Asadi

    (Ferdowsi University of Mashhad)

  • Mohammad T. Dastorani

    (Ferdowsi University of Mashhad)

  • Roy C. Sidle

    (University of Central Asia)

  • Afshin Jahanshahi

    (Sari Agricultural Sciences and Natural Resources University)

Abstract

Assessment of the spatial distribution of potential pathways of sediment transport and the degree of linkage between sediment sources and the channel network within a watershed represents a valuable analysis for informing management decisions on sediment yield and transfer. Given the limitations of conventional methods for determining index of sediment connectivity (IC), there is a need to provide a flexible and efficient approach with the ability to apply different factors. In this regard, five decision tree-based machine learning models: M5 prime (M5P), random tree (RT), random forest (RF), alternating model tree (AMT), and reduced error pruning tree (REPT) were tested using geomorphic and climatic factors. Two databases were constructed with 200 and 1600 classes at 50 watersheds in Queensland, Australia. In these models, IC was assessed as an output parameter and six attributes that affect IC were assigned as input parameters (i.e., elevation, slope, area, length of stream channel, normalized difference vegetation index, and rainfall). Statistical validation and comparison of model predictions with calculated IC values based on the approach of Borselli et al. (Catena 75:268–277, 2008) were performed. Based on the statistical criteria, the RF model produced the most robust estimations of IC compared to other models and performed very well for IC modelling, especially in smaller subsections of watersheds. Accordingly, these findings can play an effective role for implementing watershed management and soil and water resources management measures.

Suggested Citation

  • Haniyeh Asadi & Mohammad T. Dastorani & Roy C. Sidle & Afshin Jahanshahi, 2024. "A Comparative Assessment of Decision Tree Algorithms for Index of Sediment Connectivity Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2293-2313, May.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03760-9
    DOI: 10.1007/s11269-024-03760-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03760-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03760-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Yan Chia & Chai Hoon Koo & Yuk Feng Huang & Wei Chan & Jia Yin Pang, 2023. "Artificial Intelligence Generated Synthetic Datasets as the Remedy for Data Scarcity in Water Quality Index Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 6183-6198, December.
    2. Elham Fijani & Khabat Khosravi, 2023. "Hybrid Iterative and Tree-Based Machine Learning Algorithms for Lake Water Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(14), pages 5431-5457, November.
    3. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    4. Chenchen Zhao & Chengshuai Liu & Wenzhong Li & Yehai Tang & Fan Yang & Yingying Xu & Liyu Quan & Caihong Hu, 2023. "Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(13), pages 5171-5187, October.
    5. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Karim Zkik & Anass Sebbar & Oumaima Fadi & Sachin Kamble & Amine Belhadi, 2024. "Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach," Electronic Commerce Research, Springer, vol. 24(1), pages 497-533, March.
    10. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    12. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    13. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    14. Zhenchao Zhang & Weixin Luan & Chuang Tian & Min Su, 2025. "Impact of Urban Expansion on School Quality in Compulsory Education: A Spatio-Temporal Study of Dalian, China," Land, MDPI, vol. 14(2), pages 1-20, January.
    15. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    16. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    17. Cini, Federico & Ferrari, Annalisa, 2025. "Towards the estimation of ESG ratings: A machine learning approach using balance sheet ratios," Research in International Business and Finance, Elsevier, vol. 73(PB).
    18. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    19. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    20. José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:7:d:10.1007_s11269-024-03760-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.