IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i4d10.1007_s11269-023-03450-y.html
   My bibliography  Save this article

Modelling and Analyzing a Unique Phenomenon of Surface Water Temperature Rise in a Tropical, Large, Riverine Reservoir

Author

Listed:
  • Shibo Guo

    (Tsinghua University)

  • Dejun Zhu

    (Tsinghua University)

  • Yongcan Chen

    (Tsinghua University
    Southwest University of Science and Technology)

Abstract

Through numerical simulation using the three-dimensional Delft3D-Flow model, a unique phenomenon was found in a tropical, large, riverine reservoir in China on the Lancang-Mekong River, namely the Nuozhadu Reservoir. The surface water temperature rises significantly from the upper end of the reservoir to the dam, by about + 3.8 ℃ per 100 km, far exceeding the original longitudinal increase rate before construction of the reservoir. As a result, the water is always warmer than the air in front of the dam all the year round. Analysis illustrated that this phenomenon results from the strong solar radiation in the tropical region and the strong thermal stratification in the reservoir and the increase of surface water temperature is positively correlated with the hydraulic residence time. This phenomenon may have an important effect on the local environment; since there are many large, riverine reservoirs in tropical regions across the world, this study can serve as a reference for the management of the reservoirs with similar characteristics.

Suggested Citation

  • Shibo Guo & Dejun Zhu & Yongcan Chen, 2023. "Modelling and Analyzing a Unique Phenomenon of Surface Water Temperature Rise in a Tropical, Large, Riverine Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1711-1727, March.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:4:d:10.1007_s11269-023-03450-y
    DOI: 10.1007/s11269-023-03450-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03450-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03450-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    2. Chakaphon Singto & Martijn Vries & Gert Jan Hofstede & Luuk Fleskens, 2021. "Ex Ante Impact Assessment of Reservoir Construction Projects for Different Stakeholders Using Agent-Based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1047-1064, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    2. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    3. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    4. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    5. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    6. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    7. Bao, Haiyan & Yang, Jiandong & Zhao, Guilian & Zeng, Wei & Liu, Yanna & Yang, Weijia, 2018. "Condition of setting surge tanks in hydropower plants – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2059-2070.
    8. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    9. Sousa, Jorge A.M. & Teixeira, Fábio & Faias, Sérgio, 2014. "Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems," Energy, Elsevier, vol. 69(C), pages 3-11.
    10. Motamed, Mesbah J. & Arriola, Christine & Hansen, James & MacDonald, Stephen, 2013. "Cotton and Hydropower in Central Asia: How Resource Competition Affects Trade," Economic Information Bulletin 262128, United States Department of Agriculture, Economic Research Service.
    11. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    12. Liu Yuan & Jianzhong Zhou & Zijun Mai & Yuanzheng Li, 2017. "Random Fuzzy Optimization Model for Short-Term Hydropower Scheduling Considering Uncertainty of Power Load," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2713-2728, July.
    13. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    14. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    15. Hu, Zhuangli & Zhang, Yongjun & Li, Canbing & Li, Jing & Cao, Yijia & Luo, Diansheng & Cao, Huazhen, 2015. "Utilization efficiency of electrical equipment within life cycle assessment: Indexes, analysis and a case," Energy, Elsevier, vol. 88(C), pages 885-896.
    16. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    17. Xinran Guo & Huaiyu Cheng & Hao Wang & Yuanchu Cheng & Mian Sun, 2019. "Analysis of the Power Fluctuations Caused by the Unstable Flow in the Trifurcation of Multi-Turbine Diversion Systems with Common Penstock in Hydropower Units," Energies, MDPI, vol. 12(15), pages 1-17, July.
    18. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    19. Jianxu Zhou & Chaoqun Li & Yutong Mao, 2023. "Discussion on Operational Stability of Governor Turbine Hydraulic System Considering Effect of Power System," Energies, MDPI, vol. 16(11), pages 1-17, May.
    20. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:4:d:10.1007_s11269-023-03450-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.