IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i14d10.1007_s11269-023-03620-y.html
   My bibliography  Save this article

A Probability Model for Short-Term Streamflow Prediction Based on Multi-Resolution Data

Author

Listed:
  • Lili Wang

    (College of Physics and Electronic Engineering, Northwest Normal University
    Engineering Research Center of Gansu Province for Intelligent Information Technology and Application)

  • Zexia Li

    (College of Physics and Electronic Engineering, Northwest Normal University)

  • Fuqiang Ye

    (College of Physics and Electronic Engineering, Northwest Normal University)

  • Tongyang Liu

    (College of Physics and Electronic Engineering, Northwest Normal University)

Abstract

Reliable streamflow prediction is important for rational water resource planning. However, the strong nonlinearity and uncertainty of streamflow changes make accurate prediction challenging. Moreover, conventional streamflow prediction uses single-resolution data and provides deterministic prediction without uncertainty estimation, which leads to one-sidedness in data information extraction and risks in water resource decision-making. To improve streamflow prediction, this study proposes a probability prediction model integrating multi-resolution data for short-term streamflow prediction. In the proposed model, singular spectrum analysis (SSA) is utilized to process multi-resolution streamflow data to remove hidden noise. Then, support vector regression (SVR) is used for modelling, and grid search (GS) and cross-validation (CV) methods are employed to determine the optimal parameters of SVR. Finally, Gaussian process regression (GPR) is used for nonlinear fusion and probabilistic prediction. To verify the effectiveness of the proposed model, streamflow data from the Pingchuan bridge and Gaoya station with two different resolutions are collected, and several relevant models and indices are used for comparative analysis and comprehensive evaluation. The experimental results show that the proposed model significantly outperforms the relevant compared models, indicating that the proposed model effectively reduces the influence of interference signals on the modelling and fully utilizes the feature information provided by different resolution data to improve streamflow prediction. The results also confirm the superiority of integrating multi-resolution data over using single-resolution data in improving streamflow prediction. Moreover, the proposed model provides reliable uncertainty estimation in addition to providing accurate point prediction, which is helpful for water resource scheduling and decision-making. Therefore, the proposed model is recommended as a reliable method for streamflow prediction.

Suggested Citation

  • Lili Wang & Zexia Li & Fuqiang Ye & Tongyang Liu, 2023. "A Probability Model for Short-Term Streamflow Prediction Based on Multi-Resolution Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(14), pages 5601-5618, November.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:14:d:10.1007_s11269-023-03620-y
    DOI: 10.1007/s11269-023-03620-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03620-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03620-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    2. Parisa Noorbeh & Abbas Roozbahani & Hamid Kardan Moghaddam, 2020. "Annual and Monthly Dam Inflow Prediction Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2933-2951, July.
    3. Saeed Mozaffari & Saman Javadi & Hamid Kardan Moghaddam & Timothy O. Randhir, 2022. "Forecasting Groundwater Levels using a Hybrid of Support Vector Regression and Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1955-1972, April.
    4. Ying Wang & Bo Feng & Qing-Song Hua & Li Sun, 2021. "Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    5. Hui Hu & Jianfeng Zhang & Tao Li, 2021. "A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5119-5138, December.
    6. Shangfu Wei & Xiaoqing Bai, 2022. "Multi-Step Short-Term Building Energy Consumption Forecasting Based on Singular Spectrum Analysis and Hybrid Neural Network," Energies, MDPI, vol. 15(5), pages 1-21, February.
    7. Lifeng Yuan & Kenneth J Forshay, 2021. "Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong-kai Feng & Wen-jie Liu & Wen-jing Niu & Tao Yang & Wen-chuan Wang & Sen Wang, 2025. "Compound Hydrological Forecasting Model by Long Short-term Memory Network Coupled with Adaptive Mode Decomposition and Evolutionary Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(6), pages 2651-2672, April.
    2. Zhong-kai Feng & Wen-jie Liu & Zheng-yang Tang & Bao-fei Feng & Guo-liang Ji & Yin-shan Xu & Wen-jing Niu, 2025. "Integrated Runoff Forecasting Model with Mode Decomposition and Metaheuristic-optimized Bidirectional Gated Recurrent Unit," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(6), pages 2763-2784, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Rajesh & Sachdeva Anishka & Pansari Satyam Viksit & Srivastav Arohi & S. Rehana, 2023. "Improving Short-range Reservoir Inflow Forecasts with Machine Learning Model Combination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 75-90, January.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Farhana Islam & Monzur Alam Imteaz, 2022. "A Novel Hybrid Approach for Predicting Western Australia’s Seasonal Rainfall Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3649-3672, August.
    4. Zhuo Jia & Yuhao Peng & Qin Li & Rui Xiao & Xue Chen & Zhijin Cheng, 2024. "Monthly Runoff forecasting using A Climate‑driven Model Based on Two-stage Decomposition and Optimized Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5701-5722, November.
    5. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
    6. Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
    7. Wu, Cong & Li, Jiaxuan & Liu, Wenjin & He, Yuzhe & Nourmohammadi, Samad, 2023. "Short-term electricity demand forecasting using a hybrid ANFIS–ELM network optimised by an improved parasitism–predation algorithm," Applied Energy, Elsevier, vol. 345(C).
    8. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
    9. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    10. Simian Pang & Zixuan Zheng & Fan Luo & Xianyong Xiao & Lanlan Xu, 2021. "Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    11. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    12. Peiqiang Gao & Wenfeng Du & Qingwen Lei & Juezhi Li & Shuaiji Zhang & Ning Li, 2023. "NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1481-1497, March.
    13. Mohammed, Safwan & Arshad, Sana & Bashir, Bashar & Vad, Attila & Alsalman, Abdullah & Harsányi, Endre, 2024. "Machine learning driven forecasts of agricultural water quality from rainfall ionic characteristics in Central Europe," Agricultural Water Management, Elsevier, vol. 293(C).
    14. Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    15. Yong Huang & Kehan Miao & Xiaoguang Liu & Yin Jiang, 2022. "The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4739-4763, September.
    16. Bao-Jian Li & Guo-Liang Sun & Yan Liu & Wen-Chuan Wang & Xu-Dong Huang, 2022. "Monthly Runoff Forecasting Using Variational Mode Decomposition Coupled with Gray Wolf Optimizer-Based Long Short-term Memory Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2095-2115, April.
    17. Giulia Evangelista & Daniele Ganora & Paola Mazzoglio & Francesca Pianigiani & Pierluigi Claps, 2023. "Flood Attenuation Potential of Italian Dams: Sensitivity on Geomorphic and Climatological Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 6165-6181, December.
    18. Hossien Riahi-Madvar & Majid Dehghani & Rasoul Memarzadeh & Bahram Gharabaghi, 2021. "Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1149-1166, March.
    19. Milica Markovic & Jelena Markovic Brankovic & Miona Andrejevic Stosovic & Srdjan Zivkovic & Bojan Brankovic, 2021. "A New Method for Pore Pressure Prediction on Malfunctioning Cells Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 979-992, February.
    20. R. Sarma & S. K. Singh, 2022. "A Comparative Study of Data-driven Models for Groundwater Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2741-2756, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:14:d:10.1007_s11269-023-03620-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.