IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i11d10.1007_s11269-020-02635-z.html
   My bibliography  Save this article

Groundwater Circulation Well for Controlling Saltwater Intrusion in Coastal aquifers: Numerical study with Experimental Validation

Author

Listed:
  • Om Prakash Vats

    (Indian Institute of Technology Guwahati)

  • Bhrigumani Sharma

    (Indian Institute of Technology Guwahati)

  • Juergen Stamm

    (Institute for Hydraulic Engineering and Technical Hydromechanics, Technical University Dresden)

  • Rajib Kumar Bhattacharjya

    (Indian Institute of Technology Guwahati)

Abstract

Saltwater intrusion into coastal aquifers has become a prominent environmental concern worldwide. As such, there is a need to prepare and implement proper remediation techniques with careful planning of freshwater withdrawal systems for controlling saltwater intrusion in coastal marine and estuarine environments. This paper investigates the performance of groundwater circulation well (GCW) in controlling saltwater intrusion problems in unconfined coastal aquifers. The GCWs have been established as a promising in-situ remedial technique of contaminated groundwater. The GCW system creates vertical circulation flow by extracting groundwater from an aquifer through a screen in a single well and injecting back into the aquifer through another screen. The circulation flow induced by GCW force water in a circular pattern between abstraction and recharge screens and can be as a hydraulic barrier for controlling saltwater intrusion problem in coastal aquifers. In this study, an effort has been made to investigate the behavior of saltwater intrusion dynamics under a GCW. An experiment has been conducted in a laboratory-scale flow tank model under constant water head boundary conditions, and the variable-density flow and transport model FEMWATER is used to simulate the flow and transport processes for the experimental setup. The evaluation of the results indicates that there is no further movement of saltwater intrusion wedge towards the inland side upon implementation of GCW, and the GCW acts as a hydraulic barrier in controlling saltwater intrusion in coastal aquifers. The present study reveals the GCWs system can effectively mitigate the saltwater intrusion problem in coastal regions and could be considered as one of the most efficient management strategies for controlling the problem.

Suggested Citation

  • Om Prakash Vats & Bhrigumani Sharma & Juergen Stamm & Rajib Kumar Bhattacharjya, 2020. "Groundwater Circulation Well for Controlling Saltwater Intrusion in Coastal aquifers: Numerical study with Experimental Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3551-3563, September.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02635-z
    DOI: 10.1007/s11269-020-02635-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02635-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02635-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Volker, Raymond E. & Zhang, Qi & Lockington, David A., 2002. "Numerical modelling of contaminant transport in coastal aquifers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 35-44.
    2. Akbar Javadi & Mohammed Hussain & Mohsen Sherif & Raziyeh Farmani, 2015. "Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1843-1857, April.
    3. Rajib Bhattacharjya & Bithin Datta, 2005. "Optimal Management of Coastal Aquifers Using Linked Simulation Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 295-320, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Han & Wenxi Lu & Yue Fan & Jianan Xu & Jin Lin, 2021. "Surrogate-Based Stochastic Multiobjective Optimization for Coastal Aquifer Management under Parameter Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1479-1497, March.
    2. Sobhy R. Emara & Tamer A. Gado & Bakenaz A. Zeidan & Asaad M. Armanuos, 2023. "Evaluating the Impact of Inclined Cutoff-Wall to Control Seawater Intrusion in Heterogeneous Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 6021-6050, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
    2. Partha Majumder & T. I. Eldho, 2016. "A New Groundwater Management Model by Coupling Analytic Element Method and Reverse Particle Tracking with Cat Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1953-1972, April.
    3. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    4. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    5. A. Bobba, 2012. "Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4105-4131, November.
    6. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Chefi Triki & Slim Zekri & Ali Al-Maktoumi & Mahsa Fallahnia, 2017. "An Artificial Intelligence Approach for the Stochastic Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4925-4939, December.
    8. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    9. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    10. Mamoon Ismail & Soni M. Pradhanang & Thomas Boving & Sophia Motta & Brendan McCarron & Ashley Volk, 2024. "Review of Modeling Approaches at the Freshwater and Saltwater interface in Coastal Aquifers," Land, MDPI, vol. 13(8), pages 1-23, August.
    11. Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    12. Gi Joo Kim & Young-Oh Kim, 2021. "How Does the Coupling of Real-World Policies with Optimization Models Expand the Practicality of Solutions in Reservoir Operation Problems?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3121-3137, August.
    13. Hamid Safavi & Fatemeh Darzi & Miguel Mariño, 2010. "Simulation-Optimization Modeling of Conjunctive Use of Surface Water and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1965-1988, August.
    14. Triptimoni Borah & Rajib Kumar Bhattacharjya, 2016. "Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-Optimization Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5163-5176, November.
    15. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    16. Guihua Lu & Jingjing Liu & Zhiyong Wu & Hai He & Huating Xu & Qingxia Lin, 2015. "Development of a Large-Scale Routing Model with Scale Independent by Considering the Damping Effect of Sub-Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5237-5253, November.
    17. Domenico Baú, 2012. "Planning of Groundwater Supply Systems Subject to Uncertainty Using Stochastic Flow Reduced Models and Multi-Objective Evolutionary Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2513-2536, July.
    18. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
    19. Seyed Ahmad Soleymani & Shidrokh Goudarzi & Mohammad Hossein Anisi & Wan Haslina Hassan & Mohd Yamani Idna Idris & Shahaboddin Shamshirband & Noorzaily Mohamed Noor & Ismail Ahmedy, 2016. "A Novel Method to Water Level Prediction using RBF and FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3265-3283, July.
    20. G. Kopsiaftis & V. Christelis & A. Mantoglou, 2019. "Comparison of Sharp Interface to Variable Density Models in Pumping Optimisation of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1397-1409, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02635-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.