IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i22p4365-d285025.html
   My bibliography  Save this article

Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources

Author

Listed:
  • Alvin Lal

    (Discipline of Civil Engineering, College of Science & Engineering, James Cook University, Queensland 4811, Australia)

  • Bithin Datta

    (Discipline of Civil Engineering, College of Science & Engineering, James Cook University, Queensland 4811, Australia)

Abstract

Optimal strategies for the management of coastal groundwater resources can be derived using coupled simulation-optimization based management models. However, the management strategy actually implemented on the field sometimes deviates from the recommended optimal strategy, resulting in field-level deviations. Monitoring these field-level deviations during actual implementation of the recommended optimal management strategy and sequentially updating the management model using the feedback information is an important step towards efficient adaptive management of coastal groundwater resources. In this study, a three-phase adaptive management framework for a coastal aquifer subjected to saltwater intrusion is applied and evaluated for a regional-scale coastal aquifer study area. The methodology adopted includes three sequential components. First, an optimal management strategy (consisting of groundwater extraction from production and barrier wells) is derived and implemented for optimal management of the aquifer. The implemented management strategy is obtained by solving a homogenous ensemble-based coupled simulation-optimization model. Second, a regional-scale optimal monitoring network is designed for the aquifer system considering possible user noncompliance of a recommended management strategy, and uncertainties in estimating aquifer parameters. A new monitoring network design objective function is formulated to ensure that candidate monitoring wells are placed in high risk (highly contaminated) locations. In addition, a new methodology is utilized to select candidate monitoring wells in areas representative of the entire model domain. Finally, feedback information in the form of measured concentrations obtained from the designed optimal monitoring wells is used to sequentially modify pumping strategies for future time periods in the management horizon. The developed adaptive management framework is evaluated by applying it to the Bonriki aquifer system located in Kiribati, which is a small developing island country in the South Pacific region. Overall, the results from this study suggest that the implemented adaptive management strategy has the potential to address important practical implementation issues arising due to noncompliance of an optimal management strategy and uncertain aquifer parameters.

Suggested Citation

  • Alvin Lal & Bithin Datta, 2019. "Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4365-:d:285025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/22/4365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/22/4365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvin Lal & Bithin Datta, 2018. "Development and Implementation of Support Vector Machine Regression Surrogate Models for Predicting Groundwater Pumping-Induced Saltwater Intrusion into Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2405-2419, May.
    2. Behzad Ataie-Ashtiani & Hamed Ketabchi, 2011. "Elitist Continuous Ant Colony Optimization Algorithm for Optimal Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 165-190, January.
    3. Y. Mogheir & V. Singh, 2002. "Application of Information Theory to Groundwater Quality Monitoring Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(1), pages 37-49, February.
    4. Rajib Bhattacharjya & Bithin Datta, 2005. "Optimal Management of Coastal Aquifers Using Linked Simulation Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 295-320, June.
    5. Baalousha, Husam, 2010. "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand," Agricultural Water Management, Elsevier, vol. 97(2), pages 240-246, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Pumping Optimization of Coastal Aquifers Assisted by Adaptive Metamodelling Methods and Radial Basis Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5845-5859, December.
    2. Domenico Baú, 2012. "Planning of Groundwater Supply Systems Subject to Uncertainty Using Stochastic Flow Reduced Models and Multi-Objective Evolutionary Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2513-2536, July.
    3. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    4. Vasileios Christelis & Aristotelis Mantoglou, 2016. "Coastal Aquifer Management Based on the Joint use of Density-Dependent and Sharp Interface Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 861-876, January.
    5. Akbar Javadi & Mohammed Hussain & Mohsen Sherif & Raziyeh Farmani, 2015. "Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1843-1857, April.
    6. Hany Abd-Elhamid & Akbar Javadi, 2011. "A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2755-2780, September.
    7. Shih -Ching Wu & Kai-Yuan Ke & Hsien-Tsung Lin & Yih-Chi Tan, 2017. "Optimization of Groundwater Quality Monitoring Network Using Risk Assessment and Geostatistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 515-530, January.
    8. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    9. Hedi Mahmoudpour & Somaye Janatrostami & Afshin Ashrafzadeh, 2023. "Optimal Design of Groundwater Quality Monitoring Network Using Aquifer Vulnerability Map," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 797-818, January.
    10. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    11. Om Prakash Vats & Bhrigumani Sharma & Juergen Stamm & Rajib Kumar Bhattacharjya, 2020. "Groundwater Circulation Well for Controlling Saltwater Intrusion in Coastal aquifers: Numerical study with Experimental Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3551-3563, September.
    12. Dickson Abdul-Wahab & Dickson Adomako & Gibrilla Abass & Dennis K. Adotey & Geophrey Anornu & Samuel Ganyaglo, 2021. "Hydrogeochemical and isotopic assessment for characterizing groundwater quality and recharge processes in the Lower Anayari catchment of the Upper East Region, Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5297-5315, April.
    13. Yu, Xiayang & Sreekanth, J. & Cui, Tao & Pickett, Trevor & Xin, Pei, 2021. "Adaptative DNN emulator-enabled multi-objective optimization to manage aquifer−sea flux interactions in a regional coastal aquifer," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    15. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    16. L. Raso & S. V. Weijs & M. Werner, 2018. "Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 339-357, January.
    17. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    18. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    19. Hamid Safavi & Fatemeh Darzi & Miguel Mariño, 2010. "Simulation-Optimization Modeling of Conjunctive Use of Surface Water and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1965-1988, August.
    20. Xin Liu & Shunlong Li, 2022. "Impact of COVID-19 pandemic on low-carbon shared traffic scheduling under machine learning model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 987-995, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4365-:d:285025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.