A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-016-1245-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ricardo Gomes & Alfeu Marques & Joaquim Sousa, 2013. "District Metered Areas Design Under Different Decision Makers’ Options: Cost Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4527-4543, October.
- M. Tabesh & A. Yekta & R. Burrows, 2009. "An Integrated Model to Evaluate Losses in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 477-492, February.
- J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
- Raúl Baños & Juan Reca & Juan Martínez & Consolación Gil & Antonio Márquez, 2011. "Resilience Indexes for Water Distribution Network Design: A Performance Analysis Under Demand Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2351-2366, August.
- Kunlun Xin & Tao Tao & Yingjun Lu & Xiaolan Xiong & Fei Li, 2014. "Apparent Losses Analysis in District Metered Areas of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 683-696, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Manuel Herrera & Edo Abraham & Ivan Stoianov, 2016. "A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1685-1699, March.
- S. Alvisi, 2015. "A New Procedure for Optimal Design of District Metered Areas Based on the Multilevel Balancing and Refinement Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4397-4409, September.
- Bárbara Brzezinski Azevedo & Tarcísio Abreu Saurin, 2018. "Losses in Water Distribution Systems: A Complexity Theory Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2919-2936, July.
- Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
- Ioan Sarbu, 2014. "Nodal Analysis of Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3143-3159, August.
- Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
- Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
- Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
- Allisa G. Hastie & Christopher M. Chini & Ashlynn S. Stillwell, 2022. "A mass balance approach to urban water analysis using multi‐resolution data," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 213-224, February.
- Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
- Aditya Gupta & K. D. Kulat, 2018. "A Selective Literature Review on Leak Management Techniques for Water Distribution System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3247-3269, August.
- Elijah Knaap & Sergio Rey, 2024. "Segregated by design? Street network topological structure and the measurement of urban segregation," Environment and Planning B, , vol. 51(7), pages 1408-1429, September.
- Heng Ye & Zhiping Li & Guangyue Li & Yiran Liu, 2022. "Topology Analysis of Natural Gas Pipeline Networks Based on Complex Network Theory," Energies, MDPI, vol. 15(11), pages 1-20, May.
- Róbert Pethes & Levente Kovács, 2023. "An Exact and an Approximation Method to Compute the Degree Distribution of Inhomogeneous Random Graph Using Poisson Binomial Distribution," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
- Geoff Boeing, 2020.
"A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood,"
Environment and Planning B, , vol. 47(4), pages 590-608, May.
- Boeing, Geoff, 2018. "A Multi-Scale Analysis of 27,000 Urban Street Networks: Every US City, Town, Urbanized Area, and Zillow Neighborhood," SocArXiv hmhts, Center for Open Science.
- repec:osf:socarx:tk93y_v1 is not listed on IDEAS
- Şişman, Eyüp & Kızılöz, Burak, 2020. "Trend-risk model for predicting non-revenue water: An application in Turkey," Utilities Policy, Elsevier, vol. 67(C).
- Agnieszka Blokus-Dziula & Przemysław Dziula, 2024. "Risk Management Model of Urban Resilience Under a Changing Climate," Sustainability, MDPI, vol. 17(1), pages 1-23, December.
- repec:osf:socarx:93h82_v1 is not listed on IDEAS
- Taha AL-Washali & Saroj Sharma & Maria Kennedy, 2016. "Methods of Assessment of Water Losses in Water Supply Systems: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 4985-5001, November.
- Salah Saleh & Tiku Tanyimboh, 2014. "Optimal Design of Water Distribution Systems Based on Entropy and Topology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3555-3575, September.
- repec:osf:socarx:7fxjz_v1 is not listed on IDEAS
- Geoff Boeing, 2020.
"Planarity and street network representation in urban form analysis,"
Environment and Planning B, , vol. 47(5), pages 855-869, June.
- Boeing, Geoff, 2018. "Planarity and Street Network Representation in Urban Form Analysis," SocArXiv hma8y, Center for Open Science.
More about this item
Keywords
Water distribution networks; Resilience; Complex systems; Graph theory; Multiscale graph decomposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:5:d:10.1007_s11269-016-1245-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.